Смекни!
smekni.com

Анализ различных методов оценки статистических показателей при типическом отборе (стр. 6 из 7)

.

3) Необходимо организовать 40%-ную типическую выборку:

,

где n – численность выборочной совокупности.

Значит, далее рассчитываем выборочную совокупность для данных полученных групп по формуле типического отбора выборочной совокупности пропорционального численности групп и вариации группировочного признака:

,

где

- среднее квадратическое отклонение соответствующей полученной группы, Ni - численность генеральной совокупности соответствующей полученной группы. Тогда

,

,

.

Следовательно,

n = n1+n2+n3,

60=35+15+10.


Но, проведя механическую выборку внутри образованных групп, получаем несколько другие результаты.

Проводим механическую выборку внутри первой полученной группы, границы которой 1-9,1 где ni = 46:

Таблица 5 «механический отбор 1-ой группы 1,0-9,1»

№ п/п

Выручка от реализации, млн. руб.

№ п/п

Выручка от реализации, млн. руб.

1

6,3

70

7

3

3,7

72

1

6

8,2

74

3,2

10

5,1

76

6,7

20

8,2

78

5,3

22

4

80

1,5

25

6,7

82

9

29

3,8

86

1,3

34

5,4

94

6,5

37

8,8

99

5,8

40

5,3

102

4,5

42

7,9

105

5,3

46

6,6

109

2,7

48

7,3

111

3,3

51

3,8

117

1,4

53

6,1

119

6,1

57

4,6

124

1,6

60

5,7

126

8,5

62

5,8

128

8,9

64

4,4

130

5,3

66

7

132

7,1

68

3,8

134

4,6

136

7,9

146

7,7

Проводим механическую выборку внутри второй полученной группы, границы которой 9,1-17,2, где ni = 18:


Таблица 6 «Механический отбор 2-ой группы 9,1-17,2»

№ п/п

Выручка от реализации, млн. руб.

5

10,2

13

10

15

13,5

18

15

24

14,7

31

12,4

44

10,6

54

9,3

83

15

87

16,1

89

11,8

92

17,1

95

13,9

98

16

103

10,5

108

12,5

113

14

116

15

Проводим механическую выборку внутри третьей полученной группы, границы которой 17,2-25,3, где ni = 12:

Таблица 7 «механический отбор 3-ей группы 17,2-25,3»

№ п/п

Выручка от реализации, млн. руб.

7

22,6

17

25,3

30

20,5

39

20

59

17,4

122

18,1

138

17,7

140

22,9

143

21

145

19,4

148

24,9

150

25,2

После проведения механической выборки внутри образованных групп получаем, что:

n = 46+18+12=76.

4) Далее необходимо определить с вероятностью 0,683 границы, в которых будет находиться генеральная средняя выручка от реализации товаров и услуг.

Необходимо изначально определить среднюю ошибку репрезентативности

по формуле:

,

где N – численность генеральной совокупности,

- среднее квадратическое отклонение соответствующей выборочной совокупности данной группы, Ni - численность генеральной совокупности соответствующей группы, n – численность выборочной совокупности.

Но прежде чем найти среднюю ошибку репрезентативности, необходимо найти среднее квадратическое отклонение выборочной совокупности каждой группы

.

Для первой группы:

,

для второй группы:

,

для третьей группы:

.

Далее рассчитываем ошибку репрезентативности:

,

так как вероятность P = 0,683, следовательно, t – коэффициент доверия равен 1, тогда

.

Границы определяются как:

.

Рассчитываем выборочную стратифицированную среднюю величину по формуле:

,

где

- выборочная средняя соответствующей группы, ni – численность выборочной совокупности соответствующей группы; тогда

.

Известно, что генеральная средняя равна

.

Значит, далее определяем границы, в которых будет находиться генеральная средняя выручка от реализации товаров и услуг:

9,780-0,184<

<9,780+0,184,

9,596<

<9,965.