Смекни!
smekni.com

Комплексный анализ рыбной отрасли (стр. 11 из 13)

Это движение самоподдерживающееся, поскольку какой-либо приток извне, полагаем, отсутствует.

Последовательность

называется допусти­мой траекторией в модели Гейла М на конечном интервале времени Т, если при t = 0, 1, 2, ..., T-1 справедливо отношение
. Если Т бесконечно, то тра­ектория
допустима на бесконечном интервале времени. Не равная тождественно нулю допустимая траектория
называется траекторией сба­лансированного роста, если при t = 0, 1, 2,... справедливо равенство

,

в котором λ - положительная константа, темп роста сбалансированной траекто­рии. Сбалансированная траектория

называется магистралью, если ее темп роста λ максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2,... лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением

применительно к сба­лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество Мо

М тривиальных ТП мо­дели Гейла, то есть таких процессов
, у которых
. Можно пока­зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (
,
). Его темп роста определяем следующим образом

λ(

,
) = 0.

Пусть теперь

- любой нетривиальный ТП; его темп роста
определяется так:

В правой части последнего равенства минимум берется по всем положитель­ным компонентам вектора

.

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста

любого ТП
, или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию
. Каковы свойства этой функции? Отметим три из них.

1. Функция

является положительно однородной функцией нулевой степени, то есть

,

при любом (

> 0).

2. Значение функции

удовлетворяет неравенству

3. В множестве М существует такой ТП

, что

причем справедливо неравенство

.

Итак, для фармацевтической отрасли представлены данные по валовому выпуску и осуществленным соответствующим затратам для семи лет. Сведем эти данные в таблицу:

Материальные затраты, x Выпуск, y
1 87573 101964
2 95515,9 191487
3 109837,86 166431
4 71931 120408
5 75687,8 92829
6 72835,49 83607
7 80921,5 101964

Графически это будет представлено так:

Неймановский луч, определяемый по формуле

,

выглядит на графике следующим образом.

Тогда из представленного соотношения найдем темп роста экономики:

Константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Тогда сбалансированная траектория выглядит следующим образом:

Материальные затраты, x Сбал. выпуск, y

1

87573

100524,0139

2

95515,9

109641,5752

3

109837,86

126081,5841

4

71931

82568,7466

5

75687,8

86881,13301

6

72835,49

83607

7

80921,5

92888,83552


Глава 3

3.1. Доработки модели Леонтьева

Статистическая таблица модели Леонтьева, построенная с помощью коэффициентов прямых затрат выглядит следующим образом:

Производство продукции, B

Потребление продукции

Конечная продукция Y

Валовой выпуск

Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная

0,01

0,15

0,73

0,1

0,01

56700

101964

Логистика

0,04

0,2

0,1

0,3

0,36

56430

204324

Судоремонтная

0,3

0,01

0,6

0,05

0,04

390860

508326

Пищевая

0,5

0,01

0,1

0,3

0,09

787890

1289754

Машино и приборо-строение

0,2

0,2

0,1

0,2

0,3

323630

734563

Что можно сказать о полученных коэффициентах прямых затрат для фармацевтической отрасли. Как видно из таблицы, наиболее крупным потребителем продукции рыбной отрасли является судостроение, что не удивительно, так как большая часть рыбной продукции препаратов поступает по государственным программам. Если рассматривать рыбную отрасль как потребителя, то по предложенному разбиению на отрасли, видно, что пищевая промышленность поставляет большую часть продукции в качестве рыбной отрасли. В качестве предложений по усовершенствованию функционирования экономики в рамках модели Леонтьева можно представить следующее: увеличить коэффициент прямых затрат отрасли приборо- и машиностроения с 0,2 до 0,5, а, логистики, хотя бы до 0,1, что позволит автоматизировать производство лекарственных препаратов, проверку их качества, а также усовершенствовать каналы сбыта и скорость движения продукции.