Начальные условия для заданной системы
Задающее воздействие имеет вид:
Время слежения
Введём вспомогательную вектор-функцию
НУ определяются из соотношения
Зная закон изменения
Используя скрипт AKOR_slegenie_na_konech_interval_II_podxod, получили следующие результаты:
Рис.45. Графики решения уравнения Риккати.
Рис.46. График задающего воздействия.
Рис.47. Графики коэффициентов регулятора обратной и прямой связи.
Рис.48. Графики фазовых координат.
Рис.49. График управления.
Выводы: На данном этапе была решена задача построения линейного сервомеханизма. В качестве отслеживаемого воздействия была задана экспоненциальная функция. Анализируя выше приведенные графики, можно сказать, что все состояния заданной системы, особенно первая фазовая координата, отслеживается с заданной точностью.
Пусть интервал времени
Разобьем весь интервал на 3 равных отрезка.
Данная задача похожа на задачу отслеживания известного задающего воздействия, заданного аналитическим выражением, но с некоторыми изменениями:
1. Поскольку в уравнение Риккати относительно матрицы
2. Начальными условиями для системы на каждом отрезке будет точка, в которую пришла система на предыдущем отрезке:
3. Вектор
4. В остальном данная задача аналогична задаче построения линейного сервомеханизма (пункт 5.5).
Используя скрипт AKOR_slegenie_so_skolz_intervalami_Modern, получили следующие результаты:
Рис.50. Графики решения уравнения Риккати.
Рис.51. Графики фазовых координат.
Рис.52. График управления.
Выводы: при сравнении полученных результатов, можно сказать, что различия в фазовых координатах при наличии трех участков и при наличии одного участка несущественные. Если сравнивать скорость вычислений и используемые ресурсы, то скорость увеличивается почти в 3 раза, а памяти требуется в 3 раза меньше для решения поставленной задачи. В точках соединения участков наблюдаются скачки, связанные с тем, что требуется значительные затраты на управление, но для первой координаты этот скачок незначительный.
Наблюдателями называются динамические устройства, которые позволяют по известному входному и выходному сигналу системы управления получить оценку вектора состояния. Причем ошибка восстановления
Система задана в виде:
Начальные условия для заданной системы
Матрицы
Весовые матрицы
Построим наблюдатель полного порядка и получим значения наблюдаемых координат
В качестве начальных условий для наблюдателя выберем нулевые н.у.:
Ранг матрицы наблюдаемости:
наблюдаемости.
Т. е. система является наблюдаемой.
Коэффициенты регулятора:
тогда
Собственные значения матрицы
Коэффициенты наблюдателя выберем из условия того, чтобы наблюдатель был устойчивым, и ближайший к началу координат корень матрицы
Коэффициенты матрицы наблюдателя:
Используя скрипт Sintez_nablyud_polnogo_poryadka, получили следующие результаты:
Рис.53. Графики решения уравнения Риккати.