Смекни!
smekni.com

Математические модели в экономике (стр. 3 из 4)

Согласно отчету по пределам:

Количество выпускаемой продукции одного из видов может изменяться в пределах от 0 до найденного оптимального значения, это не приведет к изменению ассортимента продукции, необходимого для получения максимальной прибыли. При этом, если на выпускать продукцию №1, то прибыль составит 971,81 р., продукцию №2 - 895,63 р., продукцию №3 - 865,51 р., продукцию №4 - 1145,89 р.

Выводы

Проведенное исследование математической модели и ее последующий анализ позволяет сделать следующие выводы:

Максимально возможную прибыль, составляющую 1292,95 р., при выполнении всех заданных условий и ограничений можно получить, если выпустить продукции №1 - 188,9 единиц, продукции №2 - 172,75 единиц, продукции №3 - 213,72 единиц, продукции №4 - 29,41 единицы.

После выпуска продукции все ресурсы будут истрачены полностью.

Структура найденного решения наиболее сильно зависит от реализации единицы продукции №1 и №3, а также от уменьшения или увеличения всех имеющихся ресурсов.

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Теоретические положения.

Балансовый метод - метод взаимного сопоставления финансовых, материальных и трудовых ресурсов и потребностям в них. Балансовая модель экономической системы - это система уравнений, удовлетворяющих требованиям соответствия наличия ресурса и его использования.

Межотраслевой баланс отражает производство и распределение продукта в отраслевом разрезе, в межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Схема межотраслевого баланса.

Производящие отрасли Потребляющие отрасли Конечный продукт Валовый продукт
1 2 3... j... n
1 2 3 . . . i . . . n X11 X12 X13... X1j … X1n X21 X22 X23... X2j... X2n X31 X32 X33... X3j... X3n ... . ...I. . ... . Xi1 Xi2 Xi3... Xij... Xin ... . ... . ... . Xn1 Xn2 Xn3... Xnj... Xnn Y1 Y2 Y3 . II . Yi . . . Yn X1 X2 X3 . . . Xi . . . Xn
Амортизация Оплата труда Чистый доход Валовый продукт C1 C2 C3 Cn U1 U2 U3III Un m1 m2 m3 mn X1 X2 X3 Xn IV

Каждая отрасль в балансе является и потребляющей и производящей. Выделяют 4 области баланса (квадранты) имеющих экономическое содержание:

таблица межотраслевых материальных связей, здесь Xij - величины межотраслевых потоков продукции, т.е. стоимость средств производства произведенных в i отрасли и потребных в качестве материальных затрат в j отрасли.

Конечная продукция - это продукция выходящая из сферы производства в область потребления, накопления, на экспорт и т.д.

Условно чистая продукция Zj - это сумма амортизации Cj и чистой продукции (Uj + mj).

Отражает конечное распределение и использование национального дохода. Столбец и строка валовой продукции используется для проверки баланса и составления экономико-математической модели.

Итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:

(1)

Валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

(2)

Просуммируем по всем отраслям уравнения 1:


Аналогично для уравнения 2:

Левая часть это валовый продукт, тогда и правые части приравниваем:

(3)

Постановка задачи.

Имеется четырехотраслевая экономическая система. Определить коэффициенты полных материальных затрат на основе данных: матрица коэффициентов прямых материальных затрат и вектор валовой продукции (табл.2).

Таблица 2.

Матрица коэффициентов прямых материальных затрат Вектор валовой продукции
0,042 0,016 0,016 0,078 0,078 0,078 0,016 0,124 0,016 0,042 0,18 0 0 0,078 0,016 0,042 138 697 282 218

Составление балансовой модели.

Основой экономико-математической модели межотраслевого баланса являются матрицы коэффициентов прямых материальных затрат:

(4)

Коэффициент прямых материальных затрат показывает какое количество продукции i отрасли необходимо, если учитывать только прямые затраты для производства единицы продукции j отрасли.

Учитывая выражение 4, выражение 2 можно переписать:

(5)

- вектор валовой продукции.

- вектор конечной продукции.

Матрицу коэффициентов прямых материальных затрат обозначим:


Тогда система уравнений 5 в матричной форме:

(6)

Последнее выражение это модель межотраслевого баланса или модель Леонтьева. При помощи модели можно:

Задав величины валовой продукции Х определить объемы конечной продукции Y:

(7)

где Е - единичная матрица.

Задав величины конечной продукции Y определить значение валовой продукции Х:

(8)

обозначим через В величину (Е-А) - 1, т.е.

,

то элементы матрицы В будут

.

Для каждой i отрасли:

- это коэффициенты полных материальных затрат, показывают какое количество продукции i отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j отрасли.

Для расчета экономико-математической модели межотраслевого баланса с учетом заданных величин:

Матрицы коэффициентов прямых материальных затрат:

Вектора валовой продукции:

Единичную матрицу, соответствующую матрице А примем:

Для расчета коэффициентов полных материальных затрат воспользуемся формулой:

Для определения валовой продукции по всем отраслям, формулой:

Для определения величины межотраслевых потоков продукции (матрица х) определим элементы матрицы х по формуле:

,

где i = 1…n; j = 1…n;

n - количество строк и столбцов квадратной матрицы А.

Для определения вектора условно чистой продукции Z элементы вектора вычисляются по формуле:

Решение задачи на компьютере

Загружаем программу Mathcad.

Создаем файл под именем Lidovitskiy-Kulik. mcd. в папке Эк/к 31 (2).

На основании предварительных установок (шаблона) создаем и форматируем заголовок.

Вводим с соответствующими комментариями (ORIGIN=1) заданные матрицу коэффициентов прямых материальных затрат А и вектор валовой Х продукции (все надписи и обозначения вводим латинским шрифтом, заданные формулы и комментарии должны располагаться либо на уровне, либо выше рассчитываемых значений).

Рассчитываем матрицу коэффициентов полных материальных затрат В. Для этого вычисляем единичную матрицу, соответствующую матрице А. Для этого используем функцию identiti (cols (A)).