Смекни!
smekni.com

Математические модели поведения производителей (стр. 3 из 3)

Так как решение задачи на максисмум прибыли (5) единственно, то

= х*. Итак, если задача на максимум прибыли имеет единственное решение х* > 0, то ей отвечает задача на максимум выпуска при заданных издержках С* = wx*, причем последняя имеет такое же решение, как и первая (см. рис. 1).

Геометрическое место точек касания изокост и изоквант при разных значениях издержек С определяет долгосрочный путь развития фирмы Х(С), т.е. показывает, как будет увеличиваться (уменьшаться) выпуск, если издержки возрастут (уменьшатся). Поскольку эта зависимость монотонна, то существует обратная монотонная функция издержек

С = С(Х).

Поскольку Х(С) — максимальный выпуск при заданных издержек то издержки С(Х), отвечающие этому максимальному выпуску X, — минимальные издержки.

Если известна функция минимальных издержек С(Х), оптимальный размер выпуска снова определяется из условия максимума прибыли

max П(х), П(х) = рХ -С(X). (11)

Приравниваем к нулю производную:

т.е. в оптимальной точке предельные издержки равны цене выпуска:

(кроме того, максимум прибыли достигается при

). Рассмотрим п соотношений (7)


Эти соотношения могут быть разрешены относительно х в окрестности оптимальной точки, если якобиан |J|

0, где

Это означает, что должен быть отличен от нуля гессиан |Н| производственной функции (но Н отрицательно определена, поэтому действительно |Н| =0). Тогда

х* = х* (р,w) (12)

или

хj* = хj* (р,w), j = 1,…,n

Эти п уравнений задают функции спроса (на ресурсы), найденные с помощью модели поведения фирмы. Функции спроса на ресурсы могут быть также найдены экспериментально с помощью методов математической статистики по выборочным данным. Функция предложения

Х*(р, w) = F [x*(p, w)].

Подобно уравнениям Слуцкого, показывающим реакцию потребителя на изменения цен товаров, аналогичные уравнения описывают реакцию производителя на изменения цен выпуска и ресурсов.


При заданных ценах р, w поведение производителя определяется следующими соотношениями (всего (п + 1) соотношение):

Х*(р, w) = F [x*(p, w)],

.

Задачи

1. Производственная функция Х=

описывает зависимость между затратами ресурсов х1, х2 , х3 и выпуском Х.

Определить максимальный выпуск, если

х123=9.

Каковы предельные продукты в оптимальной точке?

Решение.

Согласно условиям (8) для задачи на максимум выпуска, должны выполняться:

max F(x), wx

С, х
0.

Составим функцию Лагранжа:

L(x,

) = F(x) +
(C-wx),

L(x,

)=
+
;

Дифференцируя заданную функцию по перменным х1, х2 , х3, имеем систему неравенств:


Решая систему, получим значения: при

=
4,061,
0,877.

Обозначим найденую точку через М. Найдем значение функции Х в полученой точке:

11,28.

Найдем предельные продукты по ресурсам в точке М:

2. Производственная функция фирмы имеет следующий вид:

Х=3

.

Определить предельные продукты по ресурсам и построить изокванту Х=3. Написать уравнеие изоклинали (линии наибольшего роста выпуска), проходящей через точку х1=1, х2=1, найти норму замены первого ресурса вторым в этой точке.

Решение.

Предельным продуктом по первому ресурсу является

по второму –

Уравнение изокванты имеет вид при Х=3 :

х1

х2

Общее уравнение изоклинали имеет вид:

, где (х1 0, х2 0) – координаты точки, через которую проходит изоклиналь. Подставим точки в уравнение, получим:
.

Норма замены первого ресурса вторым в этой точке равен:


Список используемой литературы

1. В. А. Колемаев «Математическая экономика».

2. В. Д. Камаев «Экономическая теория для вузов».

3. В. С. Немчинов «Экономико-математические методы и модели».

4. Ресурс Internet.