При п = 2параметры равновесия соответствуют случаю дуополии Курно [см. (14), (17) - (19)]. Очевидно, что с увеличением числа фирм на рынке отраслевой спрос удовлетворяется все в большем объеме при более низкой цене. При этом снижается уровень производства каждого отдельного олигополиста. Вместе с понижением цены это приводит к уменьшению объема получаемой прибыли.
В результате при значительном увеличении числа фирм на рынке (при
) цена фактически опускается до уровня средних предельных издержек ( ), а уровень выпуска отдельной фирмы становится очень маленьким по сравнению с размерами рынка. Рынок олигополии Курно по всем параметрам превращается в рынок совершенной конкуренции, где фирмы не могут обеспечить себе положительную прибыль ( ).Если не вводить предпосылки (2),(3),относительно издержек производства, то решение модели Курно в общем виде может быть затруднено. Важно то, что алгоритм решения останется прежним. Будут изменяться характеристики рыночного равновесия, но основные свойства сохранятся. Объемы выпуска олигополистов Курно будут в большинстве случаев различны, но цена останется выше предельных и средних издержек, и фирмы смогут обеспечить себе положительную прибыль.
Однако следует сделать существенную оговорку. Алгоритм поиска рыночного равновесия в модели олигополии Курно включает поиск решения системы из пуравнений с пнеизвестными, которая в большинстве случаев не будет линейной. Система уравнений далеко не всегда имеет решение. С другой стороны, она может иметь более одного решения.
Таким образом, возникает проблема существования и единственности равновесного состояния на рынке олигополии. Эта проблема в той или иной степени затрагивает все модели олигополии по мере их усложнения. Кроме того, с усложнением моделей возрастают трудности поиска равновесного решения.
3.2 Модель олигополии Бертрана
Обобщение модели Бертрана для случая п фирм в отрасли фактически не изменяет основные характеристики равновесия на рынке. Логика процесса принятия решений при предпосылках (1)-(3)остается прежней.
Таким образом, ценовая война будет продолжаться до тех пор, пока цена не снизится до уровня предельных и средних издержек. Олигополисты независимо друг от друга вынуждены будут установить одну и ту же цену (
) обеспечивая рыночный спрос на уровне предложения на рынке совершенной конкуренции. Олигополисты Бертрана по-прежнему не смогут получить положительную прибыль и, следуя предпосылкам модели, в условиях равновесия разделяет рынок между собой. Доля предложения каждой фирмы на рынке составит п-ючасть рыночного спроса:(3.8)
Очевидно, что при одинаковом количестве фирм на рынке олигополист Бертрана в условиях равновесия предлагает на рынок больше продукции, чем олигополист Курно (достаточно сравнить (3.4)и (3.8)), а рыночный спрос удовлетворяется в большем объеме при более низкой цене.
С увеличением числа фирм на рынке изменяется только один параметр рыночного равновесия: уменьшается доля предложения каждой отдельной фирмы. В результате при значительном увеличении числа фирм на рынке (при
) уровень выпуска отдельной фирмы становится слишком мал по сравнению с размерами рынка. В этом крайнем случае рынок олигополии Бертрана, как и рынок Курно, трансформируется в рынок совершенной конкуренции.Пусть две фирмы на рынке предлагают однородную продукцию, зная функцию рыночного спроса (1), но имеют неравные условия по издержкам производства:
(3.9)
где с1, с2 - положительные константы.
Пусть для определенности c1 меньше с2. Таким образом, у обеих фирм предельные издержки по-прежнему равны средним, но у первой фирмы из уровень меньше (c1<с2).
При данных предпосылках ценовая война неизбежна. Предположим, что ценовая война привела к понижению цены до уровня средних издержек второй фирмы (c2).Равновесие на рынке при такой цене не может быть достигнуто, поскольку первая фирма ещё способна получить выгоду от снижения цены.
Допустим, что первая фирма назначит цену на уровне
(3.10)
где
.Верхняя граница изменения
существует, поскольку фирме невыгодно устанавливать цену ниже уровня средних и предельных издержек. Если цена, назначенная первой фирмой, выше её средних издержек (с1), но ниже средних издержек фирмы-конкурента (с2), то первая фирма сможет привлечь покупателей боле низкой ценой и получить положительную прибыль.Производственная деятельность второй фирмы окажется убыточной. Продолжение ценовой войны будет увеличивать убытки второй фирмы.
Обобщая модель для случая nфирм в отрасли, можно сделать следующие выводы. При заданных условиях стратегического взаимодействия в выигрышной ситуации окажутся те фирмы, чей уровень средних и предельных издержек будет ниже. Следовательно, число фирм на рынке может сократиться.
Равновесие на рынке олигополии Бертрана также не будет единственным и, в частности, может быть достигнуто, если одна или несколько фирм смогут наладить безубыточное производство при одном и том же уровне рыночной цены.
3.3 Модель олигополии Стэкльберга
При предпосылках (1) - (3)стратегическое взаимодействие по принципу «лидер-последователь» не выгодно для обеих фирм: характеристики равновесия во многом неудовлетворительны даже для лидера, и вряд ли кто-то из конкурентов захочет быть последователем. Обобщение модели дуополии Стэкльберга при таких предпосылках не поможет ответить на вопрос, почему из множества идентичных фирм только одна окажется лидером по объему выпуска.
Пусть фирмы, как и ранее, производят однородную продукцию, зная линейную функцию рыночного спроса (1). Пусть только одна фирма (условно -первая фирма) имеет преимущество в издержках над всеми конкурентами. Сохраним предпосылку, что у всех фирм на рынке предельные издержки постоянны и равны средним издержкам.
При таких предпосылках введем обозначения. Пусть cL - предельные и средние издержки первой фирмы (лидера); cf - предельные и средние издержки каждой фирмы-последователя, где cL<cf . Пусть на рынке олигополии взаимодействуют одна фирма-лидер и п фирм-последователей, т.е. рыночный спрос обеспечивают (п+ 1) фирм:
(3.11)
Последователи вынуждены признать преимущество фирмы-лидера, ибо при значительном возрастании объема предложения рыночная цена может опуститься ниже уровня средних издержек фирмы-последователя, оставаясь при этом выше уровня средних издержек фирмы-лидера (cL<p<cf). Значит, увеличив масштабы производства, фирма-лидер при определенных условиях может получать положительную прибыль, в то время как ее конкуренты будут иметь убытки.
Таким образом, каждый последователь осознает лидерство первой фирмы, рассматривает уровень ее выпуска как заданный и решает задачу на максимум прибыли при нулевых предполагаемых вариациях. Учитывая условие (3.11), функцию прибыли олигополиста (3.2)можно записать для фирмы-последователя в виде:
(3.12)
Необходимое условие экстремума (3.3) примет вид:
(3.13)
Обратим внимание на то, что в модели олигополии Стэкльберга последователь рассматривает уровень выпуска любого конкурента как постоянный, последователи ведут себя как олигополисты Курно.
Используем для фирм-последователей тот же алгоритм решения модели, который упростил решение задачи при анализе модели олигополии Курно. Все фирмы-последователи находятся в одинаковых условиях. Следовательно, при достижении равновесия будут предлагать на рынок равные объемы производства qf. Условие (3.13)запишем в более удобном виде:
(3.14)откуда легко получить функцию реакции любой фирмы-последователя:
Фирма-лидер информирована о поведении последователей. Она осознает, что каждый последователь реагирует на изменение объема выпуска фирмы-лидера в соответствии со своей функцией реакции (3.15). Функция реакции определяет значение предполагаемой вариации: