Смекни!
smekni.com

Применение математического моделирования в экономике (стр. 3 из 3)

2. Коэффициент корреляции. Его смысл и свойства.

Коэффициент корреляции показывает степень статистической зависимости между двумя числовыми переменными.

Коэффициентом корреляции rхуслучайных величинX и Y называется отношение корреляционного момента к произведению средних квадратических отклонений этих величин.

rxy= µxy/σxσy

Коэффициент корреляции является безразмерной величиной. Коэффициент корреляции независимых случайных величин равен нулю.

Свойства:

1. Абсолютная величина корреляционного момента двух случайных величин Х и Y не превышает среднего геометрического их дисперсий.

│µxy│≤ √DxDy

2. Абсолютная величина коэффициента корреляции не превышает единицы.

│rxy│≤ 1

Случайные величины называются коррелированными, если их корреляционный момент отличен от нуля, и некоррелированными, если их корреляционный момент равен нулю. Если случайные величины независимы, то они и некоррелированы, но из некоррелированности нельзя сделать вывод о их независимости. Если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными.

3. Оцените тесноту связи и направление связи между признаками x и y, если известны: b – коэффициент регрессии,

– среднеквадратические отклонения признаков x и y.

Направление и теснота связи между признаками x и y оцениваются на основе коэффициента корреляции, который рассчитывается по формуле

b = (-1) (650-523)/300 = -0,423;

= (700-523)/100 = 1,77;

= (523-400)/100 = 1,23;

r = -0,423* 1,77/1,23 = -0,423*1,439 = -0,609;

r = -0,609.

Полученный коэффициент корреляции показывает, что связь между признаками x и y умеренная и обратная, т.е. при возрастании факторного признака x значение результативного признака y уменьшается.


Список используемой литературы

1. Иванилов Ю.П., Лотов А.В. Математические методы в экономике – М.: Наука, 1979.

2. Лопатников Л.И. Экономико-математический словарь. – М.: Наука, 1987.

3. Экономико-математические методы и прикладные модели: Учеб. пособие для вузов / Под ред. В.В. Федосеева. - М.: ЮНИТИ, 2000.

4. Громенко В. В. Математическая экономика: Учебно-практическое пособие, руководство по изучению дисциплины, учебная программа по дисциплине / Московский государственный университет экономики, статистики и информатики. – М.:МЭСИ, 2004. – 100 с.

5. Щедрин И.И., Кархов А.Н. Экономико-математические методы в торговле. – М.: Экономика , 1980.