Смекни!
smekni.com

Статистическое изучение взаимосвязи социально-экономических явлений и процессов (стр. 2 из 3)

, (17)

где n-2 - число степеней свободы при заданном уровне значимости a и объеме выборки n.

Вычисленное значение trфсравнивается с критическим tk, которое берется из таблицы Стьюдента с учетом заданного уровня значимости a и числа степеней свободы k = n - 2.

Если trф > tk, то это свидетельствует о значимости линейного коэффициента корреляции r и существенности связи между признаком-фактором и признаком-результатом.

Поскольку не все фактические значения результативного признака лежат на линии регрессии, более справедливо для записи уравнения корреляционной зависимости воспользоваться следующей формулой:

, (18)

где e - отражает случайную составляющую вариации результативного признака.

В некоторых случаях рассеяние точек корреляционного поля настолько велико, что для принятия решений в управлении не целесообразно пользоваться уравнением регрессии, так как погрешность в оценке анализируемого показателя будет чрезвычайно велика. Для всей совокупности наблюдаемых значений рассчитывается средняя квадратическая ошибка уравнения регрессии, которая представляет собой среднее квадратическое отклонение фактических значений результативного признака у относительно значений, рассчитанных по уравнению регрессии ух:

. (19)

Среднюю квадратическую ошибку уравнения регрессии Se сравнивают со средним квадратическим отклонением результативного признака sу. Если Se < sу, то использование уравнения регрессии в статистическом анализе является целесообразным.

Таким образом, опираясь на оценку существенности параметров уравнения регрессии и значений линейного коэффициента корреляции, а также на основании оценки надежности уравнения регрессии, дают заключение об адекватности построенной регрессионной модели и возможности распространения выводов, полученных по результатам малой выборки на всю генеральную совокупность.

После проверки адекватности, установления точности и надежности регрессионной модели необходимо ее проанализировать, т.е. дать экономическую интерпретацию параметров регрессии.

Для уравнения парной линейной зависимости прежде всего необходимо проверить согласуется ли знак параметра а1 с теоретическими представлениями и соображениями о направлении влияния признака-фактора на результативный признак. Для удобства интерпретации параметра а1 следует использовать коэффициент эластичности:

. (20)

Коэффициент эластичности показывает среднее изменение результативного признака при изменении факторного признака на 1% и вычисляется в% -ах.

Уравнение регрессионной зависимости является базой для расчета прогнозных значений результативного признака, стоящих за пределами изучаемого ряда. Для осуществления прогноза значений результативного признака по уравнению регрессии используют не дискретные (точечные), а интервальные оценки.

Средняя квадратическая ошибка уравнения регрессии дает возможность в каждом отдельном случае с определенной вероятностью указать, что величина результативного признака расположена в определенном интервале относительно значения, вычисленного по уравнению регрессии.

Зная дисперсию результативного показателя у и задаваясь уровнем доверительной вероятности, определяют доверительные границы прогнозного значения результативного признака упрогноз при значении факторного признака хо по формуле:

, (21)

где ухо - дискретная (точечная) оценка прогнозного значения результативного признака у, рассчитанная по уравнению регрессии, при заданном значении факторного признака хо;

ta - критерий Стьюдента, который для линейной зависимости определяется в соответствии с уровнем значимости a по распределению Стьюдента с k = n- 2 степенями свободы;

При практическом использовании уравнения регрессии следует помнить, что экстраполяция, т.е. нахождение прогнозируемых уровней за пределами изучаемого ряда, допускается только тогда, когда существенно не изменяются условия формирования уровней признаков, которые лежат в основе определения параметров уравнения регрессии. В противном случае использование уравнений для составления прогнозов должно быть отвергнуто.

2. Пример выполнения лабораторной работы

2.1 Задание на лабораторную работу

На основе ранжированных данных о производительности труда и стаже работы двадцати рабочих бригады (таблица) необходимо:

2.1 Установить результативный и факторный признаки.

2.2 Определить наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы.

2.3 Построить на графике поле корреляции и эмпирическую линию корреляционной связи.

2.4 Построить регрессионную модель парной корреляционной зависимости и определить её параметры.

2.5 Построить на графике теоретическую кривую корреляционной зависимости.

2.6 Рассчитать показатели тесноты связи между выработкой рабочего и стажем работы. Дать качественную оценку степени тесноты связи.

2.7 Оценить существенность параметров регрессивной модели и показателей тесноты связи. Дать оценку надёжности уравнения регрессии.

2.8 Дать экспериментальную интерпретацию параметров построенной регрессионной модели.

2.9 На основании регрессионной модели парной зависимости указать доверительные границы, в которых будет находиться прогнозное значение уровня производительности труда рабочего бригады, если стаж его работы составит 10,5 лет при уровне доверительной вероятности 95%.

Решение:

Установим результативный и факторный признаки: результативный признак (y) - выработка, факторный (x) - стаж работы, лет.

Определим наличие и форму корреляционной связи между производительностью труда рабочих бригады и стажем работы. Так как увеличение значений признака-фактора влечёт за собой увеличение величины результативного признака. То можно предположить наличие прямой корреляционной связи между выработкой и стажем работы. Проведём группировку работников бригады по признаку-фактору - стажу работы. Результаты оформим в таблицу 2. Сравнив средние значения результативного признака по группам, можно сделать вывод о наличии связи между выработкой и стажем работы. Причём она будет являться прямой, так как рост значений признака фактора влечёт рост средних значений признака результата.

Построим поле корреляции.


Рисунок 1. Поле корреляции

Построим регрессионную модель парной корреляционной зависимости и определим её параметры:

- уравнение парной линейной корреляционной зависимости (регрессионная модель).

,

Таблица 2 - Расчётная таблица.

8 800 6400 640000 64 789,02 -1,95 3,8025 152,5 23256,25 10,98 120,56
8 850 6800 722500 64 102,5 10506,25 60,98 3718,56
8 720 5760 518400 64 232,5 54056,25 -69,02 4763,76
9 850 1650 722500 81 872,86 -0,95 0,9025 102,5 10506,25 -22,86 622,57
9 800 7200 640000 81 -152,5 23256,3 -72,86 5308,57
9 880 7920 774400 81 -72,5 5256,25 7,14 50,98
9 950 8550 902500 81 2,5 6,25 77,14 5950,57
9 820 7380 672400 81 -132,5 17556,25 -52,86 2794,17
10 900 9000 810000 100 956,7 0,05 0,0025 -52,5 2756,25 -56,7 3114,89
10 1000 10000 1000000 100 47,5 2256,25 43,3 1874,89
10 920 9200 846400 100 -32,5 1056,25 -36,7 1346,89
10 1060 10600 1123600 100 107,5 11556,25 103,3 10670,89
10 950 9500 902500 100 2,5 6,25 -6,7 44,89
11 900 9900 810000 121 1040,54 1,05 1,1025 -52,5 2756,25 -140,54 975,15
11 1200 13200 1440000 121 247,5 61256,25 159,46 25421, 19
11 1150 12650 1322500 121 197,5 39006,5 109,46 11981,49
11 1000 11000 1000000 121 47,5 2256,25 -40,54 1643,49
12 1200 14400 1440000 144 1124,38 2,05 4, 2025 247,5 6156,25 75,62 5718,38
12 1100 13200 1210000 144 147,5 21756,25 -24,38 594,38
12 1000 12000 1000000 144 47,5 2256,25 -124,38 5470,38
199 19050 192310 2013 19050,16 32,95 358275 12969,33

Найдём среднее произведение факторного и результативного признака по формуле (8):