Смекни!
smekni.com

Линейные уравнения парной и множественной регрессии (стр. 3 из 5)

Вывод: отвергаем нулевую гипотезу

на принятом уровне значимости
, т.к. наблюдаемое значение критерия больше табличного.

Следовательно, предположение об однородности дисперсий ошибок, при условии, что выполнены стандартные предположения о модели наблюдений, включая предположение о нормальности ошибок, неверно. Наблюдается гетероскедастичность, что приводит к ошибочным статистическим выводам при использовании МНК. Следовательно, полученные оценки не являются состоятельными.

Задача № 4

По данным таблицы построить уравнение регрессии, выявить наличие автокорреляции остатков, используя критерий Дарбина - Уотсона, и проанализировать пригодность полученного уравнения для построения прогнозов.

Таблица №15

Год Выпуск продукции в США в среднем за 1 час, % к уровню 1982 г., Х Среднечасовая заработная плата в экономике США, в сопоставимых ценах 1982 г., Y
1960 65,6 6,79
1961 68,1 6,88
1962 73,3 7,07
1963 76,5 7,17
1964 78,6 7,33
1965 81,0 7,52
1966 83,0 7,62
1967 85,4 7,72
1968 85,9 7,89
1969 85,9 7,98
1970 87,0 8,03
1971 90,2 8,21
1972 92,6 8,53
1973 95,0 8,55
1974 93,3 8,28
1975 95,5 8,12

Найдем параметры линейного уравнения множественной регрессии и значения остатков.

Дополним таблицу данных столбцами "

", "Квадрат разности остатков
" и "Квадрат остатка
" и заполним их.

Таблица №16

Y X Yi et et-1 (et-et-1) ^2 et^2
6,79 65,6 6,667235239 0,122765 0,015071
6,88 68,1 6,815288112 0,064712 0,122765 0,003370136 0,004188
7,07 73,3 7,123238088 -0,05324 0,064712 0,013912197 0,002834
7,17 76,5 7,312745766 -0,14275 -0,05324 0,008011624 0,020376
7,33 78,6 7,437110179 -0,10711 -0,14275 0,001269895 0,011473
7,52 81,0 7,579240937 -0,05924 -0,10711 0,002291464 0,003509
7,62 83,0 7,697683236 -0,07768 -0,05924 0,000340118 0,006035
7,72 85,4 7,839813994 -0,11981 -0,07768 0,001775001 0,014355
7,89 85,9 7,869424568 0,020575 -0,11981 0,019709191 0,000423
7,98 85,9 7,869424568 0,110575 0,020575 0,008100000 0,012227
8,03 87,0 7,934567833 0,095432 0,110575 0,000229318 0,009107
8,21 90,2 8,12407551 0,085924 0,095432 0,000090396 0,007383
8,53 92,6 8,266206268 0,263794 0,085924 0,031637467 0,069587
8,55 95,0 8,408337026 0,141663 0,263794 0,014915922 0,020068
8,28 93,3 8,307661073 -0,02766 0,141663 0,028670633 0,000765
8,12 95,5 8,437947601 -0,31795 -0,02766 0,084266268 0,101091
Суммы 0,218589631 0,298494

По формуле

вычислим значение статистики
:

Так как

, то значение статистики

равно

.

По таблице критических точек Дарбина Уотсона определим значения критерия Дарбина-Уотсона

(нижнее) и
(верхнее) для заданного числа наблюдений
, числа независимых переменных модели
и уровня значимости
. Итак, находим, что
,
.

По этим значениям числовой промежуток

разбиваем на пять отрезков:

,

,

,

,

.

На основании выполненных расчетов находим, что наблюдаемое значение статистики

принадлежит первому интервалу.

Вывод: существует отрицательная автокорреляция, то есть гипотеза

отклоняется и с вероятностью
принимается гипотеза
.

Следовательно, полученное уравнение регрессии

не может быть использовано для прогноза, так как в нем не устранена автокорреляция в остатках, которая может иметь разные причины. Автокорреляция в остатках может означать, что в уравнение не включен какой-либо существенный фактор. Возможно также, что форма связи неточна.

Задача № 5

В таблице приводятся данные о динамике выпуска продукции Финляндии (млн. долл.).

Таблица №17

Год Выпуск продукции, yt млн.долл.
1989 23 298
1990 26 570
1991 23 080
1992 29 800
1993 28 440
1994 29 658
1995 39 573
1996 38 435
1997 39 002
1998 39 020
1999 40 012
2000 41 005
2001 39 080
2002 42 680

Задание:

1. Постройте график временного ряда.

2. Сделайте вывод о присутствии или отсутствии тренда при доверительной вероятности 0,95.

3. Найдите среднее значение, среднеквадратическое отклонение и коэффициенты автокорреляции (для лагов

) заданного ВР.

4. Проведите сглаживание данного ВР методом скользящих средних, используя простую среднюю арифметическую с интервалом сглаживания

;

5. Найдите уравнение тренда ВР

, предполагая, что он линейный, и проверьте его значимость на уровне
.