Смекни!
smekni.com

Управление запасами (стр. 3 из 9)

Практический интерес вызывает задача определения продажной цены изделия S с учетом зависимости от нее интенсивности спроса µ. Будем считать, что спрос обеспечивается полностью, а себестоимость единицы продукции составляет u. Используя (2.10), можно для дохода в единицу времени записать выражение

(2.19)

Максимальный доход достигается при

или при

(2.20)

Решать подобные уравнения удобно графически.


3. Управление запасами при случайном спросе и задержке в поставках

Простейшим случаем управления запасами при вероятностном спросе является однократное принятие решения о пополнении запаса (если решение не принимается вообще, теряет смысл само принятие управления).

Практическими примерами таких ситуаций являются все однократные процессы с относительно небольшой потребностью в материалах и оборудовании (некоторые виды строительства, обеспеченье испытательных работ), а снабжение потребителей в труднодоступных и удаленных районах.

Модель этого вида может быть названа статистической.

Структура оптимальных стратегий при вероятностном спросе и мгновенных поставках товаров

Пусть z – запас к началу операции;

Y – запас после его пополнения (очевидно, Y ≥ z);

x ≥ 0 – случайный спрос за время Т операции;

f(x) – плотность распределения спроса;

c(Y – z) – расходы на пополнение запасов.

Предполагается, что поставка производится до прихода первого требования и, следовательно, расходуется запас Y. Если к концу операции на складе осталось невостребованного товара ( Y – x) > 0 система снабжения несет избыточные расходы на хранение hT(Y – x), но может частично компенсировать убытки продажей этого товара за υ(Y – x). При x ≥ Y справедливо соотношение υ(Y – x) = =hT(Y-x) = 0. При не полном удовлетворении спроса x > Y, и только при этом условии склад платит штраф pT(x – Y).

Математическое ожидание расходов на хранение и штрафы:

(3.1)

Общие же средние затраты на хранение, штрафы и пополнение запасов будут равны

Продолжим c(Y – z) аналитически в область Y – z < 0 и будем считать, что функция NT(Y, z). Определена для Y ≥ 0 независимо от z. Найдем, при каком значении Y ≥ z величина LT(Y, z) минимальна. Для этого вычислим производную

(3.2)

(здесь учтено, что hT(0) = υ(0) = 0) и приравниваем ее к нулю. Те решения

, которым соответствует положительная вторая производная, дадут относительные минимумы NT(z). В общем случае график зависимости затрат от запаса NT(Y, z) для фиксированного z имеет несколько относительных минимумов (см. рис 2).

Рис.2

Обозначим через Y1 абсциссу абсолютного минимума функции NT(Y, z) а чрез Y3, Y5, Y7, …– абсциссы следующих за ними справа относительных минимумов этой функции. Далее, пусть Y2, Y4, Y6, … – точки , удовлетворяющие условиям

Y1 < Y2 < Y3 < Y4 < Y5 <…,

NT(Y2) = NT(Y3),

NT(Y4) = NT(Y5),

NT(Y6) = NT(Y7) и т.д.

Тогда оптимальная стратегия будет иметь следующий вид:

при z<Y1 – заказывать количество товара Y1 – z,

при Y1 ≤ z ≤ Y2 – не заказывать,

при Y2 < z < Y3 – заказывать Y3 – z,

при Y3 ≤ z ≤ Y4 – не заказывать и т.д.

Вообще при Y2n+1 ≤ z ≤ Y2n+2 выгодно воздержаться от заказа, а при Y2n < z < <Y2n+1 – заказать количество товара Y2n+1 – z, n = 0, 1, 2, …; Y0 = 0. Критические числа Yi(I = 1,2, …) в общем случае могут зависеть от z.

Приведем достаточные условия. При совместимом выполнении которых оптимальная стратегия имеет более простую форму, соответствующую единственному минимуму LT9Y) + c(Y – z):

1) NT(0, z) не является относительным минимумом, и

т.е. заказ товаров уменьшает суммарные расходы;

2) NT(Y, z) →

при Y →
;

3) уравнение

имеет не более одного вещественного корня.

Условие (3) может быть выполнено, например, в случае, когда

является монотонной функцией Y. Так, если hT(Y – x) – υ(Y – z) и pT(x – Y) – выпуклые вниз возрастающие функции, а c(Y – z) = c · (Y – z), где с – стоимость единицы товара, то первый интеграл в (3.2) будет монотонно возрастать, а второй – монотонно убывать по абсолютной величине , что обеспечивает монотонное возрастание
Если при этом справедливы так же условия (1) и (2), то решение
существует, причем оно единственно, а оптимальная стратегия пополнения объемов запасов U(z) имеет следующий вид:

При этом, так как

не зависит от z, величина
так же не зависит от z.

Заметим, что содержанием условия (1) является экономическая целесообразность создания запаса, а условия (2) – неэффективность чрезмерных запасов. Оба этих условия для большинства практических ситуаций.

Следует отметить, что единственность решения

является достаточным, но не необходимым условием существования простейшей стратегии с одним критическим уровнем. Так, если крайний справа относительный минимум NT(Y) в точке
является и абсолютным минимумом этой функции, то независимо от числа корней
оптимальная стратегия будет иметь следующий вид:

при

– заказывать количество товара

при

– не заказывать.

Предположим теперь, что стоимость пополнения запаса равна g + c · (Y – z) при Y – z > 0 и нулю – при Y – z ≤ 0. Здесь g – накладные доходы на доставку товара.

В этом случае заказ целесообразно производить лишь при

(3.3)

Если

имеет единственное решение, то, как видно из рис. 3, иллюстрирующего определение нижнего критического уровня
оптимальная стратегия будет иметь следующий вид:

при

– заказывать количество товара

при

– не заказывать.

Рис.3.

Стратегия такого типа называется стратегией двух уровней

Здесь
и
– нижний и верхний критические уровни запасов соответственно.

Расчет нормативных критических уровней запасов при вероятностном спросе и мгновенных поставках

В предыдущем разделе данной курсовой приведены некоторые достаточно общие результаты относительно вида оптимальной стратегии управления запасами. С их помощью легко показать, что при линейных функциях затрат на хранение, транспорт и штрафы и суммарных затратах, подсчитываем согласно формуле (3.1) или ее аналогу для дискретного спроса, оптимальная стратегия описывается одним или двумя критическими уровнями.

Таким образом, в рамках данной модели остается рассмотреть только способ расчета этих уровней.

При подсчете затрат по средним значениям запаса и дефицита за период, а также при независимости штрафа от объема дефицита необходим дополнительный анализ структуры системы управления запасами, поскольку эти случаи в общем виде – при нелинейных функциях c(u), hT(u) и pT(u) – не исследованы. Ниже приводятся расчетные формулы для определения критических чисел оптимальных стратегий простейшего типа при линейных c(u), hT(u) и pT(u) для различных вариантов задачи об управлении запасами с пренебрежимо малой задержкой между заказом на восполнение запаса и поставкой. Попутно устанавливаются условия существования и единственности решения для функций затрат, отличных от (3.1).