Смекни!
smekni.com

Экономико-математические методы и прикладные модели (стр. 2 из 5)

Методы решения оптимизационных задач зависят как от вида целевой функции f(X), так и от строения допустимого множества W. Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

В математическом программировании принято выделять следующие основные задачи в зависимости от вида целевой функции f(X) и от области W:

· задачи линейного программирования, если f(X) и W линейны;

· задачи целочисленного программирования, если ставится условие целочисленности переменных Х1, Х2,…, Хn;

· задачи нелинейного программирования, если форма f(X) носит нелинейный характер.

Задачи линейного программирования.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

f(X) = å СjXj ® max(min);

å aij xj = bi, iÎI, IÍM = {1, 2,…m};

å aij xj £ bi, iÎM;

Xj³0, jÎJ, JÍN = {1, 2,…n}.

При этом система линейных уравнений и неравенств, определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией или критерием оптимальности.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

1) если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;

2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;

3) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;

4) если некоторая переменная Хk не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными::

Xk = X`k – Xl, где l – свободный индекс, X`k ³ 0, Xk ³ 0.

3.2. Постановка задачи линейного программирования

Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них является, как правило, распределение ресурсов, находящихся у m производителей (поставщиков), но n потребителям этих ресурсов.

На автомобильном транспорте часто встречаются следующие задачи, относящиеся к транспортным:

· прикрепление потребителей ресурса к производителям;

· привязка пунктов отправления к пунктам назначения;

· взаимная привязка грузопотоков прямого и обратного направлений;

· отдельные задачи оптимальной загрузки промышленного оборудования;

· оптимальное распределение объемов выпуска промышленной продукции между заводами-изготовителями.

Транспортным задачам присущи следующие особенности:

· распределению подлежат однородные ресурсы;

· условия задачи описываются только уравнениями;

· все переменные выражаются в одинаковых единицах измерения;

· во всех уравнениях коэффициенты при неизвестных равны единице;

· каждая неизвестная встречается только в двух уравнениях системы ограничений.

Транспортные задачи могут решаться симплекс-методом.

3.3. Решение транспортной задачи

Мощности постав- щиков 140

Мощности потребителей

U i

18

15

32

45

30

30

10

7/15

14

8/5

7/10

0

40

12

8

10

8/40

15

0

25

6/18

10

10

12

14/7

-7

45

16

10

8/32

12

16/13

-9

Vj

-1

7

-1

8

7

Начальное распределение выберем по методу наименьших стоимостей. Порядок заполнения клеток: (3,1), (1,2), (4,3). (2,4), (1,5), (1,4), (3,5), (4,5)

Суммарные затраты:

f(x) = 6´18+7´15+8´32+8´5+8´40+7´10+14´7+16´13=1107

Рассмотрим процесс нахождения потенциалов для данного распределения.

Положим, Ui=0 Þ V2=U1+C12=7; V5=U1+C15=7=U3+14=U4+16 Þ U3= -7, U4= -9; V3=U4+C43= -1; V4=U2+8=U1+8 Þ U2=U1=0; V4=8.

Найдем оценки: dij=(Ui+cij)-Vj:

11 0 15 0 0

(dij) = 13 1 11 0 8

0 -4 4 -3 0

8 -6 0 -5 0

Данный план не является оптимальным, т.к. есть отрицательные оценки.

Построим контур перераспределения для клетки (4,2). Наименьшая поставка в вершине контура со знаком “-” равна 13, поэтому проведем перераспределение поставок, уменьшив поставки в клетках со знаком “-” на 13 и увеличив поставки в клетках со знаком “+” на 13. результаты поставлены в таблице 2.

Мощности постав- щиков 140

Мощности потребителей

U i

18

15

32

45

30

30

10

7/2

14

8/5

7/23

0

40

12

8

10

8/40

15

0

25

6/18

10

10

12

14/7

-7

45

16

10/13

8/32

12

16

-3

Vj

-1

7

5

8

7

Суммарные затраты:

f(x) = 6´18+7´2+10´13+8´32+8´5+8´40+7-23+14-7=1127

Положим U1=0

V2 = U1+C12=7=U4+10 Þ U4 = -3

V3 = U4+8=5; V4=U1+8=8=U2+8 Þ U2=0

V5 = U1+7= 7 = U3+14 Þ U3= -7

V1 = U3+6= -1

dij = (Ui+Cij)-Vj

9 0 9 0 0

(dij) = 11 1 5 0 8

0 -3 -2 -3 0

14 0 0 1 6

Наличие отрицательных оценок свидетельствует о том, что план не является оптимальным. Построим контур перераспределения для клетки (3,2). Наименьшая поставка в вершине контура со знаком “-” равна 2. Произведем перераспределение поставок. Результаты представим в таблице 3.

Мощности постав- щиков 140

Мощности потребителей

U i

18

15

32

45

30

30

10

7

14

8/5

7/25

0

40

12

8

10

8/40

15

0

25

6/18

10/2

10

12

14/5

-7

45

16

10/13

8/32

12

16

-7

Vj

-1

7

5

8

7

Суммарные затраты:

f(x) = 6´18+10´2+10´13+8´32+8´5+8´40+7´25+14´7=1119

Положим, U1=0 Þ V4=8, V5=7; V4=U2+8 Þ U2=0

V5 = U3+14 Þ U3= 7-14= -7; V1= -7+6= -1; V2= -7+10= +3

V2=U4+10 Þ U4=3-10= -7; v3= -7+8=1

9 4 13 0 0

(dij) = 13 5 9 0 8

2 0 2 -3 0

10 0 0 -3 2

Наличие отрицательных оценок свидетельствует о том, что план не является оптимальным. Построим контур перераспределения для клетки (3,4).

Наименьшая поставка в клетке со знаком “-” равна 5. Произведем перераспределение поставок результаты представим в таблице 4.

Мощности постав- щиков 140

Мощности потребителей

U i

18

15

32

45

30

30

10

7

14

8

7/30

0

40

12

8

10

8/40

15

0

25

6/18

10/2

10

12/5

14

-4

45

16

10/13

8/32

12

16

-4

Vj

2

+6

4

8

7

Суммарные затраты: