Смекни!
smekni.com

Экономико-математические методы и прикладные модели (стр. 4 из 4)

Для этого воспользуемся Анализом данных в Excel (рис. 4.2).


Рис 4.1

Результат регрессионного анализа содержится в таблице 4.2 и 4.3.

Таблица 4.2

Коэффициенты Стандартная ошибка t-статистика
Y-пересечение а0 1,944 0,249 7,810
t a1 2,633 0,044 59,516

Во втором столбце табл. 4.3 содержатся коэффициенты уравнения регрессии а0, а1, в третьем столбце – стандартные ошибки коэффициентов уравнения регрессии, а в четвертом – t – статистика, используемая для проверки значимости коэффициентов уравнения регрессии.

Уравнение регрессии зависимости

(спрос на кредитные ресурсы) от
(время) имеет вид
(рис. 4.5).

Таблица 4.3

Вывод остатков

ВЫВОД ОСТАТКА
Наблюдение Предсказанное Y Остатки
1 4,58 0,42
2 7,21 -0,21
3 9,84 0,16
4 12,48 -0,48
5 15,11 -0,11
6 17,74 0,26
7 20,38 -0,38
8 23,01 -0,01
9 25,64 0,36

Рис. 4.4

3) Оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7—3,7).

Модель является адекватной, если математическое ожидание значений остаточного ряда случайны, независимы и подчинены нормальному закону распределения.

3.1. Проверим независимость (отсутствие автокорреляции) с помощью d – критерия Дарбина – Уотсона по формуле:

Таблица 4.2

Наблюдение
1 0,42 0,18 - - -
2 -0,21 0,04 -0,63 0,42 0,18
3 0,16 0,02 0,37 -0,21 0,04
4 -0,48 0,23 -0,63 0,16 0,02
5 -0,11 0,01 0,37 -0,48 0,23
6 0,26 0,07 0,37 -0,11 0,01
7 -0,38 0,14 -0,63 0,26 0,07
8 -0,01 0,00 0,37 -0,38 0,14
9 0,36 0,13 0,37 -0,01 0,00
Сумма 0,00 0,82 0,70

,

Т.к. расчетное значение d попадает в интервал от 0 до d1, т.е. в интервал от 0 до 1,08, то свойство независимости не выполняется, уровни ряда остатков содержат автокорреляцию. Следовательно, модель по этому критерию неадекватна.

3.2. Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек. P > [2/3(n-2) – 1, 96 √ (16n-29)/90]

Количество поворотных точек равно 6 (рис.4.5).

Рис. 4.5

Неравенство выполняется (6 > 2). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

3.3. Соответствие ряда остатков нормальному закону распределения определим при помощи RS – критерия:

, где

- максимальный уровень ряда остатков,

- минимальный уровень ряда остатков,

- среднеквадратическое отклонение,

,

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

3.4. Проверка равенства нулю математического ожидания уровней ряда остатков.

В нашем случае

, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

В таблице 4.3 собраны данные анализа ряда остатков.

Таблица 4.3

Проверяемое свойство Используемые статистики Граница Вывод
наименование значение нижняя верхняя
Независимость d-критерий 0,85 1,08 1,36 неадекватна
Случайность Критерий поворотных точек 6>2 2 адекватна
Нормальность RS-критерий 2,81 2,7 3,7 адекватна
Среднее=0? t-статистика Стьюдента 0 -2,179 2,179 адекватна
Вывод: модель статистики неадекватна

4) Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

Для оценки точности полученной модели будем использовать показатель относительной ошибки аппроксимации, который вычисляется по формуле:

, где

Расчет относительной ошибки аппроксимации

Таблица 4.4

t Y Предсказанное Y
1 5 4,58 0,42 0,08
2 7 7,21 -0,21 0,03
3 10 9,84 0,16 0,02
4 12 12,48 -0,48 0,04
5 15 15,11 -0,11 0,01
6 18 17,74 0,26 0,01
7 20 20,38 -0,38 0,02
8 23 23,01 -0,01 0,00
9 26 25,64 0,36 0,01
Сумма 45 136 0,00 0,23
Среднее 5 15,11

Если ошибка, вычисленная по формуле, не превосходит 15%, точность модели считается приемлемой.

5) По построенной модели осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза рассчитать при доверительной вероятности р = 70%).

Воспользуемся функцией Excel СТЬЮДРАСПОБР. (рис. 4.10)

t = 1,12

Рис. 4.6

Для построения интервального прогноза рассчитаем доверительный интервал. Примем значение уровня значимости

, следовательно, доверительная вероятность равна 70 %, а критерий Стьюдента при
равен 1,12.

Ширину доверительного интервала вычислим по формуле:

, где

(находим из таблицы 4.1)

,

.

Вычисляем верхнюю и нижнюю границы прогноза (таб. 4.11).

Таблица 4.5

Таблица прогноза

n +k U (k) Прогноз Формула Верхняя граница Нижняя граница
10 U(1) =0.84 28.24 Прогноз + U(1) 29.сен 27.40
11 U(2) =1.02 30.87 Прогноз - U(2) 31.89 29.85

6) Фактические значения показателя, результаты моделирования и прогнозирования представить графически.

Преобразуем график подбора (рис. 4.5), дополнив его данными прогноза.

Рис. 4.7