Смекни!
smekni.com

Экономико-математическое моделирование анализа ресурсов (стр. 3 из 3)

a=1.166666667, b=2.7, следовательно уt=1,166666667+2,7t

коэффициент регрессии b=2,7, т. е. с каждым годом спрос на кредитные ресурсы финансовой компании в среднем возрастают на 2,7 млн. руб.

Рассмотрим столбец Остатки и построим с помощью «мастер диаграмм» в Excel график остатков:

1 подсчитаем количество поворотных точек р для рядов остатков – р=5

2 критическое количество определим формулой - ркр=[2*(n-2)/3-1,96*√16*n-29/90]

[ ] – целая часть; n- количество исходных данных

ркр=[2*(9-2)/3-1,96*√16*9-29/90]=2,451106=2

3 сравним фактическое р с ркр

р=5 > ркр=2 следовательно, свойство случайности выполняется.

Для проверки независимости уровней ряда остатков:

1 вычислим d- статистику (критерий Дарбина – Уотсона)

2 вычислить первый коэффициент автокорреляции r(1)

для расчетов подготовим –

∑e2(t) = 14,6 - используем Excel fx/математическая/СУММКВ),

∑(e(t)-e(t-1))2 = 32,32 – используем Excel fx/математическая/СУММКВРАЗН) – 1 массив кроме 1-го, 2 массив кроме последнего.

d=∑(e(t)-e(t-1))2 / ∑e2(t) = 32,32/14,6=2,213699

По таблице Значения d-критерия Дарбина – Уотсона определим, что d1= 1,08 и d2= 1,36

Т.е. наше d=2,213699 € (1.08;1,36), следовательно нужна дополнительная проверка, найдем d’=4-d=4-2,213699=1,786301, т.е d’ € (1,36;2)

не выпол-ся доп. Прове-ка выпол-ся d’=4-d

0 d1 d2 2 4 d

следовательно, свойство независимости уровней ряда остатков выполняются, остатки независимы.

Для проверки нормального распределения остатков вычислим R/S – статистику

R/S=emax-emin / Se

еmax- максимальный уровень ряда остатков,

еmin- минимальный уровень ряда остатков,

S- среднеквадратичное отклонение.

еmax=2,2333333 используем Excel fx/статистическая/МАКС),

еmin=-2,466666667 используем Excel fx/статистическая/МИН),

Se=1,444200224 1-я таблица Итогов регрессии строка «стандартная ошибка»

Следовательно, R/S=2,2333333 - (-2,466666667)/ 1,444200224=3,254396

Критический интервал (2,7;3,7), т.е R/S=3,254396 € (2,7;3,7), свойство нормального распределения остатков выполняется.

Подводя итоги проверки можно сделать вывод, что модель ведет себя адекватно.

Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Еотн = |e(t)/Y(t)|*100% по полученным значениям определить среднее значение (fx/математическая/СРЗНАЧ)


относит. погр-ти
28,88888889
6,19047619
7,333333333
8,787878788
2,222222222
2,156862745
4,444444444
8,933333333
10,72463768

Eотн ср =8,853564 – хороший уровень точности модели

Для вычисления точечного прогноза в построенную модель подставим соответствующие значения t=10 и t=11:

у10=1,166666667+2,7*10=28,16666667

у11=1,166666667+2,7*11= 30,86666667,

Ожидаемый спрос на кредитные ресурсы финансовой компании на 10 неделю должен составить около 28,16666667 млн. руб., а на 11 неделю около 30,86666667 млн. руб.

При уровне значимости L=30%, доверительная вероятность равна 70%, а критерий Стьюдента при к=n-2=9-2=7, равен

tкр(30%;7)=1,119159 (fx/статистическая/СТЬЮДРАСПОБР),

Se=1,444200224 1-я таблица Итогов регрессии строка «стандартная ошибка»,

t’ср = 5(fx/математическая/СРЗНАЧ) - средний уровень по рассматриваемому моменту времени,

∑(t-t’ср)=60 (fx/статистическая/КВАДРОТКЛ),

Ширину доверительного интервала вычислим по формуле:

U1=t*Se*√1+1/n+(t*-t’)2/∑(t-t’ср)= 1,119159*1,444200224*√1+1/9+(10-5)2/60=1,997788

U2=t*Se*√1+1/n+(t*-t’)2/∑(t-t’ср)=1,119159*1,444200224*√1+1/9+(11-5)2/60= 2,11426

Далее вычислим верхнюю и нижнюю границы прогноза uниж=y10-u1; uверх10+u1; uниж=y11-u1; uверх10+u1

uниж=28,16666667-1,997788=26,16888

uверх=28,16666667+1,997788=30,16445

uниж=30,86666667-2,11426=28,75241

uниж=30,86666667+2,11426= 32,98093

Спрос на кредитные ресурсы финансовой компании на 10 неделю в пределах от 26,16888 млн. руб. до 30,16445 млн. руб., а на 11 неделю от 28,75241 млн. руб. до 32,98093 млн. руб.

Строим график: