где Т – множество моментов времени;
X – множество допустимых входных воздействий,
; – множество мгновенных значений входных воздействий;U – множество состояний, или внутренних характеристик системы;
Y – множество мгновенных значений выходных сигналов;
Г – множество выходных величин,
; – выходное отображение, ; – переходная функция состояния, .Приведенное определение динамической системы является чрезвычайно общим. Такое определение имеет концептуальное значение, позволяет выработать общую терминологию, но не обеспечивает получения содержательных практических выводов, и поэтому требует дальнейшей конкретизации и введения дополнительных структур, что будет осуществлено ниже. Задачи, рассматриваемые в теории систем на основе приведенного определения, традиционны: это задачи устойчивости, управления, идентификации, оптимизации, эквивалентности, структуры, декомпозиции, синтеза и ряд других.
Для целей экономической кибернетики понятие динамической системы представляется особенно важным, поскольку экономические объекты относятся к классу динамических.
До сих пор предпосылкой описания сложной системы являлось представление о том, что взаимодействие системы с внешней средой осуществляется с помощью входов и выходов. Системы такого рода являются относительно обособленными. В реальной действительности абсолютно обособленных (замкнутых) систем не существует, хотя подобная абстракция иногда используется в целях исследования.
Локальным решениям, полученным на основе охвата небольшого числа существенных факторов, кибернетика противопоставляет системный подход. Этот подход отличается от традиционного, предусматривающего расчленение изучаемого объекта на составные элементы и определение поведения сложного объекта как результата объединения свойств входящих в него систем.
Системный подход основывается на принципе целостности объекта исследования, т.е. исследование его свойств как единого целого, единой системы. Этот принцип исходит из того, что целое обладает такими качествами, которые не обладает ни одна из его частей. Такое свойство целостной системы называют эмерджентностью (от англ. emergent – неожиданно возникающий). Выражением эмерджентных свойств является всякий эффект взаимодействия, не аддитивный по отношению к локальным эффектам.
Системный подход для максимального использования качества целостности требует непрерывной интеграции представлений о системе с различных точек зрения, на каждом этапе ее исследования, а также – подчинения частных целей общей цели, стоящей перед всей системой.
Системный подход опирается на диалектический закон взаимосвязи и взаимообусловленности явлений в мире и обществе и требует рассмотрения изучаемого явления или процесса не только как самостоятельной системы, но и как подсистемы некоторой суперсистемы более высокого уровня. Системный подход требует прослеживания как можно большего числа связей, не только внутренних, но и внешних – с тем, чтобы не упустить действительно существенные связи и факторы и оценить их эффекты. Практически системный подход – это системный охват, системные представления, системная организация исследования.
Любой объект исследования, таким образом, может быть представлен как подсистема некоторой системы более высокого ранга, – и это приводит к проблеме выделения системы, установления ее границ, – и как система по отношению к некоторой совокупности подсистем более низкого ранга, которые, в свою очередь, образованы некоторыми элементами, дальнейшее дробление которых нецелесообразно с точки зрения конкретного исследования, – и это определяет необходимость постановки задачи выбора такого первичного элемента.
Выделение системы предполагает наличие ряда системообразующих признаков, которые определяются целями исследования и волей исследователя, и в силу этого являются субъективными:
- объекта исследования;
- субъекта исследования;
- цели исследования.
Не существует однозначного подхода к определению первичного элемента, выбор которого осуществляется субъективно, в соответствии с целями исследования.
Первичным элементом системы является элементарный объект, неделимый далее средствами данного метода декомпозиции в границах данного исследования; устойчивость которого выше, чем устойчивость системы в целом.
Концепция первичного элемента системы позволяет производить структурный анализ системы, причем элементы выступают модулями структуры, "черными ящиками", внутренняя структура которых не является предметом исследования. Взаимодействия элементов системы между собой и с внешней средой обеспечивается посредством системы связей, разнообразие которых так же велико, как и разнообразие свойств системы и среды. При этом в процессе анализа и синтеза систем исследуются лишь существенные связи, а прочими пренебрегают, либо интерпретируют их как возмущения, или "шум".
При выделении системы, как правило, задается не одно, а множество отношений, или связей между элементами. Такая система характеризуется неоднородностью элементов и связей, структурным разнообразием, что свидетельствует о сложности системы.
Понятие сложной системы неоднозначно. Это собирательное название систем, состоящих из большого числа взаимосвязанных элементов. Часто сложными называют системы, которые не поддаются корректному математическому описанию либо ввиду высокого уровня разнообразия, либо из-за непознанности природы явлений, протекающих в системе.
Английский кибернетик Ст. Вир подразделяет все кибернетические системы на три группы – простые, сложные и очень сложные. Примеры систем, относящиеся к этим трем группам, приведены в табл. 1.1.
Таблица 1.1. Классификация систем по Ст. Биру
Системы | Простые | Сложные | Очень сложные |
Детерминированные | Оконная задвижка | Цифровая электронная вычислительная машина | – |
Проект механических мастерских | Автоматизация | – | |
Вероятностные | Подбрасывание монеты | Хранение запасов | Экономика |
Движение медузы | Условные рефлексы | Мозг | |
Статистический контроль качества продукции | Прибыль промышленного предприятия | Фирма |
Характеристики "сложности" систем многообразны и сопровождаются одновременно многими специфическими чертами, такими,
как:
- многокомпонентность системы (большое число элементов, связей, большие объемы циркулирующей информации, др.);
- многообразие возможных форм связей элементов (разнородность структур –древовидных, иерархических, др.);
- многокритериальность, т.е. наличие ряда противоречивых критериев;
- многообразие природы элементов, составляющих систему;
- высокий динамизм поведения системы и структурных характеристик и др.
Весьма характерным для сложных систем является то обстоятельство, что, независимо от природы исследуемой системы, при решении задач управления используются одни и те же абстрактные модели, составляющие сущность системного подхода, позволяющие определить пути продуктивного исследования сложных систем любой природы и любого назначения.
Первой и основной чертой сложных систем традиционно считается целостность, или единство системы, холизм, проявляющийся в наличии у всей системы общей цели, назначения. Еще до возникновения системотехники выдающиеся отечественные физиологи И.М. Сеченов и И.П. Павлов обогатили мировую науку идеями саморегуляции функций целостности живого организма. Полное значение и формулировка принципа органической целостности были осознаны лишь с появлением концепций общей теории систем и формированием методологии кибернетики. Поэтому системы, в отдельных частях которых не наблюдается взаимодействия со всей системой в плане подчинения единой цели; не относятся к классу сложных систем, исследуемых в кибернетике.
Целостность характеризуется рядом свойств и особенностей, ее многогранность выражается понятиями: дифференциация, интеграция, симметрия, полярность и др. Дифференциация отражает свойство расчлененности целого, проявление разнокачественности ее частей. Противоположное понятие – интеграция связано с объединением совокупности соподчиненных элементов в единое образование. Симметрия и асимметрия выражают степень соразмерности в пространственных и временных связях системы.
Любая кибернетическая система обладает всеми характерными признаками целостности. Универсальность симметрии, широко распространенной в природе и представляющей собой всеобщий закон природы, была выражена в принципе Пьером Кюри. Из принципа симметрии и полярности следуют важные заключения о свойствах структуры и процессов исследуемых кибернетикой систем и моделей.
Системный подход, основанный на принципе целостности, в исследовании свойств объекта как единого целого, требует непрерывной интеграции представлений о системе на каждом этапе исследования – системного анализа, системного проектирования, системной оптимизации. Рассматриваемый подход проявляется в действии ряда общих принципов исследования: