Динамичность:
, ,где T – упорядоченное числовое множество.
Наличие прямых и обратных связей, обеспечивающих причинно-следственные зависимости в системе управления:
(3.4)Наличие цели управления, достижение которой является макро-Функцией управляемой системы:
. (3.5)Цель системы в зависимости от ее характера задается различным образом. Для систем, работа которых завершается достижением цели, требуется, чтобы y(t) достигло целевого множества
. В частном случае, чтобы выполнялось условие . Для других систем необходимо, чтобы y(t) достигла области , a затем продолжала движение по траектории или не выходила из области .Управляемость: можно найти такое управляющее воздействие m, которое за конечное число шагов переведет систему в искомое состояние, обеспечивающее достижение цели:
, (3.6)такое, что
,где
, , – соответственно функция переходов и функция выхода системы, – количественное выражение цели, . Введение понятия управляемости системы вызывает необходимость рассмотрения вопросов качества управления и его эффективности.Пусть
– некоторое заданное целевое множество: , (3.7) – множество допустимых управлений.Если управляющее воздействие
преобразует некоторое исходное событие (t0, u0) в и t1 есть время первого достижения, то t1 называется моментом достижения, а разность (t1–t0) – временем достижения.Вещественное число, вычисляемое как некоторый функционал:
, (3.8)где
,называется качеством управления
относительно начального события (t0, u0).Определение 3.2. Абстрактной задачей управления называется сложное математическое понятие, образованное совокупностью:
(3.9)где S – динамическая система,
Т – множество моментов времени,
– целевое множество, , – множество допустимых управлений, – подмножество множества (начальных событий), – функционал качества управления;и требованием: "для каждого начального события определить некоторое допустимое управление
, которое переводит (t0,x0) в и которое при этом минимизирует функционал , где t1 – момент первого достижения, а u1 – точка первого достижения множества Y ".Определение 3.2 является весьма общим, однако служит базой для дальнейшего исследования необходимых условий оптимальности систем управления. Выяснение вопросов существования оптимального решения и поиска такого решения является содержанием математической теории управления (теория Гамилътона-Якоби, принцип максимума Понтрягина, методы функционального анализа, ряд численных методов).
Определение 3.3. Рассмотрим произвольную динамическую систему S. Законом управления называется отображение
, ставящее в соответствие каждому состоянию u(t) и каждому моменту времени / значение входного воздействия в этот момент времени.При этом другие параметры динамической системы S могут влиять на конкретный вид функции
.Принцип, в соответствии с которым входные воздействия должны вычисляться через состояния, был сформулирован Ричардом Беллманом, указавшим на его первостепенную важность. В этом принципе заключена важнейшая идея теории управления. Это научная интерпретация принципа "обратной связи", составляющего основу любого управления.
Важно отметить, что в текущем состоянии системы содержится вся информация, необходимая для определения требуемого управляющего воздействия, поскольку, по определению динамической системы, будущее поведение системы полностью определяется его нынешним состоянием и будущими управляющими воздействиями.
Оптимальное управление заключается в выборе и реализации таких управлении
, которые являются наилучшими с точки зрения эффективности достижения цели управления.Можно выделить два основных типа критериев эффективности систем управления.
Критерий эффективности первого рода – степень достижения цели системой. Если цель системы задана областью цели
или точкой , то критерием эффективности I рода является отклонение , определяемое в терминах . Цель считается достигнутой, если , или (3.10)где
– заданная малая величина.При задании целевой функции
, (3.11) ,если существует F*=extrF, критерий I рода – разность (F*–F).
Критерий эффективности второго рода – оценка эффективности траектории движения системы и цели. Он определяется как некоторая функция:
. (3.12)Критерий II рода позволяет сравнивать и оценивать различные изменения состояний системы в ходе достижения цели. Так, улучшение работы системы по критерию второго рода позволяет достичь цели при лучших значениях входов: обеспечить выпуск того же количества продукции
при меньших затратах факторов производства X; или при лучших значениях состояний системы: минимальном времени непроизводительного простоя системы, минимуме отходов и брака и т.д.В ряде случаев могут быть использованы критерии третьего типа – смешанные, в которых отражается сочетание приведенных показателей эффективности пути и степени достижения цели системой.
Многокритериальная система управления. Для многих сложных систем получить критерий эффективности в виде скалярной функции не представляется возможным. В этом случае используется векторный критерий, составляющими которого являются самостоятельные, независимые критерии. Такие системы называются многокритериальными.