Смекни!
smekni.com

Экономический анализ характеристик взаимосвязи (стр. 3 из 4)


Таблица 5 – Расчет коэффициентов отдельной детерминации

d12 0,2153
d22 -0,003
R2 0,2126

3.3 Предварительные выводы об адекватности модели

С помощью полученных коэффициентов множественной детерминации, корреляции и отдельной детерминации можно сделать предварительные выводы об адекватности модели.

1)Поскольку коэффициент множественной детерминации R =0,2126,то это свидетельствует про то, что вариация общих затрат на предприятиях на 21,26% определяется вариацией затрат оборота и трудоемкостью и на 78,74% вариацией показателей, которые не учитываются в модели.

2)Поскольку коэффициенты отдельной детерминации d1=0,2153, определяется вариацией затрат оборота.,027,то это свидетельствует о том, что вариация общих затрат на предприятиях на 21,53% определяется вариацией затрат3)Коэффициент множественной корреляции R =0,2126 характеризует слабую связь между общими затратами и факторами, которые их обуславливают. оборота.


4. Оценка дисперсионно-ковариационной матрицы оценок параметров модели

4.1 Оценка дисперсии отклонений

Вычислим оценку дисперсии отклонений по формуле

,

где

- сумма квадратов отклонений;

n – количество наблюдений;

m – количество факторов модели.

Полученное значение проверим копированием с итогового листа Регрессии значение ячейки Остаток с таблицы дисперсийного анализа. Значения совпали.

Таблица 6 – Оценка дисперсии остатков

По формуле Регрессия
MS
0,0160563 Остаток 0,0164588

4.2 Расчет дисперсии и ковариации оценок параметров модели

Для получения оценок ковариаций и дисперсий оценок параметров модели необходимо сложить ковариационную матрицу по формуле:


Таблица 7 – Оценка ковариационной матрицы оценок параметров модели

171,339642 -6,806989292 -0,5309 2,82 -0,1120349 -0,00874
0,0164588 -6,80698929 0,29993041 0,0166 -0,112 0,0049365 0,000273
-0,53085669 0,016595042 0,00234 -0,009 0,0002731 3,85E-05

Мы получили дисперсии оценок параметров модели, которые расположены по главной диагонали:

σ = 2,82 σ = 0,0049365 σ = 3,85E-05

4.3 Вычисление стандартных ошибок параметров и выводы о смещенности оценок параметров модели

Стандартные ошибки параметров модели рассчитаем по формуле

,
,
. Для получения стандартной ошибки оценки параметров а0 введем формулу возведения в степень 0,5. И аналогично получим стандартные ошибки оценок параметров а1 и а2. Для проверки полученных ошибок скопируем с итогового листа Регрессия значения ячеек столбца Стандартная ошибка. Значения совпали.

Сравним каждую стандартную ошибку с соответствующим значением оценки параметра с помощью формулы:


Таблица 8 – Расчет стандартных ошибок оценок параметров модели. Выводы о смещении оценок параметров модели

Регрессия
По формуле Стандартная ошибка Выводы о смещённости оценок параметров модели
1,67929891 1,67929891 38,967585 Оценка смещена
0,070260191 0,070260191 -132,1707 Оценка не смещена
0,006204513 0,006204513 425,3525 Оценка смещена

5. Проверка гипотез о статистической значимости оценок параметров модели на основе F- и t-критериев

5.1 Проверка адекватности модели по критерию Фишера

Проверку адекватности модели по критерию Фишера проведем по представленному алгоритму.

Шаг 1. Формулирование нулевой и альтернативной гипотез.

, т.е. не один фактор модели не влияет на показатель.

Хотя бы одно значение
отменно от нуля, т.е.

Шаг 2. Выбор соответствующего уровня значимости.

Уровнем значимости

называется вероятность сделать ошибку 1-го рода, т.е. отвергнуть правильную гипотезу. Величина
называется уровнем доверия или доверительной вероятностью.

Выбираем уровень значимости

, т.е. доверительная вероятность – Р=0,95

Шаг 3. Вычисление расчетного значения F-критерия.

Расчетное значение F-критерия определяется по формуле:

Для проверки полученного значения скопируем с итогового листа Регрессия расчетное значение F-критерия. Значения совпали

Шаг 4. Определение по статистическим таблицам F-распределения Фишера критического значения F-критерия.

Критическое значение F-критерия находим по статистическим таблицам F-распределения Фишера по соответствующим данным:

- доверительной вероятности Р=0,95 ;

- степеней свободы

Определяем табличное значение критерия

=5,14

Шаг 5. Сравнение рассчетного значения F-критерия с критическим и интерпритация результатов.

Вывод о принятии нулевой гипотезы, т.е. об адекватности модели делаем с помощью встроенной логической функции ЕСЛИ.

Поскольку

,то отвергаем нулевую гипотезу про незначимость факторов с риском ошибиться не больше чем на 5% случаев, т.е. с надежностью Р=0,95 можно считать, что принятая модель адекватна статистическим данным и на основе этой модели можно осуществлять экономический анализ и прогнозирование.

5.2 Проверка значимости оценок параметров модели по критерию Стьюдента

Проверку гипотезы о значении каждого параметра модели проведем в соответствии с представленным алгоритмом.

Шаг 1. Формулирование нулевой и альтернативной гипотез.

- оценка j-го параметра является статистически незначимой, т.е. j-й фактор никак не влияет на показатель у;

- оценка j-го параметра является статистически значимой, т.е. j-й фактор влияет на показатель у.

Шаг 2. Выбор соответствующего уровня значимости.

Выбираем уровень значимости

, т.е. доверительная вероятность – Р=0,95.

Шаг 3. Вычисление расчетного значения t-критерия.

Расчетное значение t-критерия определяется по формуле:


Во время анализа двухфакторной модели расчетные значения t-критерия определяются по формулам:

=-3,2333
=3,4264
=4,9937

Для проверки полученного значения t-критерия скопируем с итогового листа Регрессия значения ячеек столбца t-статистика. Значения совпали.

Шаг 4. Определение по статистическим таблицам t-распределения Стьюдента критического значения t-критерия.

Критическое значение t-критерия находим по статистическим таблицам t-распределения Стьюдента по соответствующим данным:

- доверительной вероятности Р=0,95 ;

- степеней свободы

Определяем табличное значение критерия

=2,45

Шаг 5. Сравнение рассчетного значения t-критерия с критическим и интерпритация результатов.

Выводы о принятии нулевой гипотезы, т.е. о значимости оценок параметров

,
и
делаем с помощью встроенной логической функции ЕСЛИ. С надежностью Р=0,95 можно считать, что