Смекни!
smekni.com

Для любого экономического субъекта возможность прогнозирования ситуации означает, прежде всего, получение лучших результатов или избежание потерь, в том числе и в государственной политике.

Под экономико-математической моделью понимается математическое описание исследуемого экономического процесса и объекта. Эта модель выражает закономерности экономического процесса в абстрактном виде с помощью математических соотношений. Использование математического моделирования в экономике позволяет углубить количественный экономический анализ, расширить область экономической информации, интенсифицировать экономические расчеты.

Применение экономико-математических методов и моделей позволяет существенно улучшить качество планирования и получить дополнительный эффект без вовлечения в производство дополнительных ресурсов.


2. Задача №1

1.1. При построении числовой схемы отчетного МОБ ориентируемся на два вида балансовых соотношений

- для отраслей производителей: вся валовая продукция отрасли-производителя (хi) распределяется на текущее промежуточное

n

потребление (Σ xij) и конечное использование (уi)

j=1

n ____

xi = Σ xij + уi, i = 1,n; (1)

j=1

- для отраслей-потребителей: валовые затраты отрасли-потребителя (хj)

n

определяются промежуточными затратами (Σ xij) и валовой добавленной

i=1

стоимостью (۷ j)

n ____

xj = Σ xij + ۷ j, j = 1,n; (2)

i=1

Заполнение элементов таблицы 2 осуществляется по следующей схеме.

В соответствии с формулой (1) объем валового выпуска первой отрасли в отчетном периоде определяется суммой промежуточного потребления и конечного использования, т.е.

х1отч = х11отч + х12отч + х13отч1отч = 30+10+15+90 = 145,

аналогично для второй и третьей отрасли:

х2отч = 35+50+20+25 = 130,

х3отч = 15 +25+30+60 = 130.

Таблица 1.

Показатели отчетного МОБ (млн.руб.)

Отрасли-

Отрасли- потребители

Промежу-точное

Конечное

Валовый

производители

1

2

3

Потребле-ние

использование

выпуск

1

30

10

15

55

90

145

2

35

50

20

105

25

130

3

15

25

30

70

60

130

Промежуточные затраты

80

85

65

230

175

405

Зарплата

20

14

20

54

Прочие элементы добавленной стоимости

45

31

45

121

Валовая добавленная стоимость

65

45

65

175

Валовой выпуск

145

130

130

405

В соответствии с формулой (2) объем валового выпуска первой отрасли в отчетном периоде определяется суммой промежуточных затрат и валовой добавленной стоимости. Поскольку валовой выпуск отраслей уже найден (xiотч), а промежуточные затраты легко определить на основе данных о

n

межотраслевых потоках (Σ xij, j = 1,3) , находим валовую добавленную

i=1

стоимость первой отрасли:

۷ 1 = х1отч – ( х11отч + х21отч31отч) = 145 – (30+35+15) = 65,

аналогично для второй и третьей отрасли:

۷ 2 = 130 – (10 + 50 + 25 ) = 45,

۷ 3 = 130 – ( 15 + 20 + 30 ) = 65.

Учитывая, что 30% валовой добавленной стоимости приходится на зарплату, рассчитываем уровень зарплаты отраслей (zi):

z1 = 30% * ۷ 1 = 0,3 * 65 = 19,5,

z2 = 0,3 * 45 = 13,5,

z3 = 0,3 * 65 = 19,5;

и как балансирующий элемент – прочие элементы добавленной стоимости (di):

d1 = ۷ 1 - z1 = 65-19,5 = 45,5,

d2 = 45 – 13,5 = 31,5,

d3 = 65 – 19,5 = 45,5.

1.2. Матрица коэффициентов прямых затрат ( аij ) n*n рассчитывается на основе отчетного МОБ по формуле:

___ ___

аijотч = Хijотч , i = 1,n , j = 1,n (3)

хjотч

Для нашей задачи в соответствии с соотношением (3), получаем:

а11отч = Х11отч = 30_ = 0,2069,

х1отч 145

а12отч = Х12отч = 10_ = 0,0769,

х2отч 130

и т.д.

Вычисления оформляются в виде матрицы прямых затрат

1.3. Для решения задачи используем балансовое уравнение модели МОБ, связывающее показатели I и II квадратов МОБ – прогнозные значения валового выпуска отраслей хiпр и конечного использования уiпр:

n ____

хiпр = Σаijпрхjпр + уiпр, i = 1,n. (4)

j=1

Предложение неизменности динамики технологических процессов означает, что технологическая матрица прогнозного периода определяется технологической матрицей отчетного периода, т.е.

___ __

аijпр = аijотч, i = 1,3, j = 1,3

Тогда соотношения (4) для нашего примера перепишутся следующим образом:

Данная система одновременных уравнений представляет собой модель для решения задачи 1.3.


1.4. Поскольку увеличение цены на продукцию второй отрасли в 2 раза является инфлятогенным фактором в экономике, произойдет повышение цен на продукцию первой и третьей отраслей. Обозначим индекс роста цен на продукцию первой отрасли р1, третьей отрасли – р3. Построение модели осуществляется с целью нахождения индексов р1 и р3 при условии, что р2 = 2 и соответствующих ограничений на рост заработной платы. Очевидно, что инфляционные процессы вызовут изменение номинальных потоков МОБ. Исходя из экономического смысла показателей отчетного МОБ, в новых ценах I и III квадранты МОБ перепишутся как представлено в таблице 3.

Таблица 2.

Показатели I и III квадрантов МОБ

в новых ценах (млн.руб.)

отрасли-производители

отрасли-потребители

1

2

3

1

30*р1

10*р1

15*р1

2

35*2

50*2

20*2

3

15*р3

25*р3

30*р3

зарплата

19,5*р1*0,7

13,5*2*0,7

19,5*р3*0,7

прочие элементы добавленной стоимости

45,5*р1

31,5*2

45,5*р3

валовый выпуск

145*р1

130*2

130*р3

Поскольку индекс цен на продукцию второй отрасли равен 2 и величина затрат на продукцию второй отрасли не влияет на формирование цены в этой отрасли, то баланс описывается для первой и третьей отрасли. Модель строится с использованием балансовых соотношений (2) в новых ценах:


Данная система одновременных уравнений представляет собой балансовую модель для решения задачи (1.4). Поскольку в дальнейшем система будет решатся на ПЭВМ и использованием стандартного ППП, необходимо провести подобные и записать модель в стандартном виде:


1.5. Задача решается аналогично решению задачи 1.4. Отличительной особенностью данной задачи является то, что инфлятогенным фактором выступает рост заработной платы на 50% в третьей отрасли, хотя в остальных отраслях зарплата остается неизменной. Данный фактор вызовет рост цен на продукцию отраслей соответственно в р1, р2, р3 раз. В новых ценах показатели I и III квадрантов МОБ представлены в табл. 4.