Смекни!
smekni.com

Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка (стр. 2 из 3)

При установлении присутствия гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Сначала можно попробовать устранить возможную причину гетероскедастичности, скорректировав исходные данные, затем попробовать изменить спецификацию модели, а в случае, если не помогут эти меры, использовать метод взвешенных наименьших квадратов.

Далее в работе проведем довольно полный анализ базовой модели, включая непосредственно тесты на обнаружение гетероскедастичности.


Аналитический раздел

1. Построение базовой регрессионной модели и оценка её качества

По данным Таблицы 1 построим исходную модель с помощью пакета Eviews3.1. Получим следующее уравнение построенной модели:

Где:

Population – общая численность населения на начало 2008г. (чел.),

Birth – численность рожденных детей за 2007г. (чел.),

Mortality – численность умерших за 2007г. (чел),

Old – численность населения в возрасте от 65 лет и старше (чел.).

Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику:

Используем в данном случае уровень значимости

. Тогда критическое значение t-статистики соответственно:

Значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.

Продолжая оценивать общее качество модели, используем критерий Фишера:

Н0: R-квадрат=0

Н1: R-квадрат>0

Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна. Поскольку значение F-наблюдаемого велико, можно сделать предположение о наличии мультиколлинеарности, что будет проверено мною в дальнейшем.

Оценим также распределение остатков в модели:

P (J-B) = 0,06, следовательно присутствует нормальное распределение остатков.

Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.

1) Первоначально воспользуемся тестомБреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:

Запишем значение

распределения для последующего сравнения с Obs* R-squared:

Приведем результаты теста с lag = 1:

с lag = 2:

с lag = 3:

Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше

а P-вероятность статистики Бреуша-Годфри больше уровня значимости

(

)

2) Воспользуемся также тестом Дарбина-Уотсона:

Приведем значение статистики:

Значения критических точек

при уровне значимости
:

Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-Wв данном случае близко к 2.

Выполним проверку регрессионной модели на мультиколлинеарность.

Построим корреляционную матрицу коэффициентов:

Найдем частные коэффициенты корреляции:


Делаем вывод о наличии высокой зависимости (коллинеарности) между переменными в каждом из трех случаев. Следовательно в модели присутствует мультиколлинеарность. Эта проблема оказывает определенное влияние на качество модели, однако ее устранение не является обязательным этапом, поэтому перейдем к дальнейшему исследованию качества регрессионной модели.

2. Исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка

Переходим непосредственно к основной теме курсвой - проверяем модель на наличие гетероскедастичности. Для этого первоначально проведем тест Вайта и оценим его результаты:


Т.к. значение P- вероятности в обоих случаях теста Уайта (nocrossterms/ crossterms) меньше уровня значимости

(

) и Obs*

R-squared превышает

то принимаем гипотезу о наличии гетероскедастичности в модели.

Дополнительно можно использовать графический анализ ряда остатков, который подтверждает вывод о наличии гетероскедастичности, т.к. график имеет выбросы и не укладывается в полосу постоянной ширины, параллельную оси ОХ (-1000000,1000000).


Таким образом, в этой модели мы имеем две проблемы – мультиколлинеарность и гетероскедастичность, в связи с чем нельзя доверять статистическим выводам и оценкам качества регрессионной модели.Продолжим дальнейший анализ модели с помощью теста Парка. Данный тест не предполагает особой свободы выбора и мы строим три регрессионные модели натуральных логарифмов остатков базовой модели на натуральные логарифмы каждой объясняющей переменной отдельно.

Представим вспомогательную модель 1 теста Парка:

Запишем уравнение вспомогательной модели 1:


Где:

POPUL2=ln (population^2)

BIRTH2=ln(birth).

Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику:

Найдем критическое значение t-статистики на уровне значимости

(

)


После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Birth в следствие того, что коэффициент

при данной переменной является значимым.

Представим вспомогательную модель 2 теста Парка:

Где:

POPUL2=ln (population^2)

MORTALITY2=ln(mortality).

Запишем уравнение вспомогательной модели 2:

Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости (

)

После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Mortality в следствие того, что коэффициент

при данной переменной является значимым.

Представим вспомогательную модель 3 теста Парка:

Где:

POPUL2=ln (population^2)

OLD2=ln(old).

Запишем уравнение вспомогательной модели 2:


Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости (

)

После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Old в следствие того, что коэффициент

при данной переменной является значимым.