При установлении присутствия гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Сначала можно попробовать устранить возможную причину гетероскедастичности, скорректировав исходные данные, затем попробовать изменить спецификацию модели, а в случае, если не помогут эти меры, использовать метод взвешенных наименьших квадратов.
Далее в работе проведем довольно полный анализ базовой модели, включая непосредственно тесты на обнаружение гетероскедастичности.
Аналитический раздел
1. Построение базовой регрессионной модели и оценка её качества
По данным Таблицы 1 построим исходную модель с помощью пакета Eviews3.1. Получим следующее уравнение построенной модели:
Где:
Population – общая численность населения на начало 2008г. (чел.),
Birth – численность рожденных детей за 2007г. (чел.),
Mortality – численность умерших за 2007г. (чел),
Old – численность населения в возрасте от 65 лет и старше (чел.).
Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику:
Используем в данном случае уровень значимости
. Тогда критическое значение t-статистики соответственно:Значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.
Продолжая оценивать общее качество модели, используем критерий Фишера:
Н0: R-квадрат=0
Н1: R-квадрат>0
Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна. Поскольку значение F-наблюдаемого велико, можно сделать предположение о наличии мультиколлинеарности, что будет проверено мною в дальнейшем.
Оценим также распределение остатков в модели:
P (J-B) = 0,06, следовательно присутствует нормальное распределение остатков.
Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.
1) Первоначально воспользуемся тестомБреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:
Запишем значение
распределения для последующего сравнения с Obs* R-squared:Приведем результаты теста с lag = 1:
с lag = 2:
с lag = 3:
Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше
а P-вероятность статистики Бреуша-Годфри больше уровня значимости
(
)2) Воспользуемся также тестом Дарбина-Уотсона:
Приведем значение статистики:
Значения критических точек
при уровне значимости :Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-Wв данном случае близко к 2.
Выполним проверку регрессионной модели на мультиколлинеарность.
Построим корреляционную матрицу коэффициентов:
Найдем частные коэффициенты корреляции:
Делаем вывод о наличии высокой зависимости (коллинеарности) между переменными в каждом из трех случаев. Следовательно в модели присутствует мультиколлинеарность. Эта проблема оказывает определенное влияние на качество модели, однако ее устранение не является обязательным этапом, поэтому перейдем к дальнейшему исследованию качества регрессионной модели.
Переходим непосредственно к основной теме курсвой - проверяем модель на наличие гетероскедастичности. Для этого первоначально проведем тест Вайта и оценим его результаты:
Т.к. значение P- вероятности в обоих случаях теста Уайта (nocrossterms/ crossterms) меньше уровня значимости
(
) и Obs*R-squared превышает
то принимаем гипотезу о наличии гетероскедастичности в модели.
Дополнительно можно использовать графический анализ ряда остатков, который подтверждает вывод о наличии гетероскедастичности, т.к. график имеет выбросы и не укладывается в полосу постоянной ширины, параллельную оси ОХ (-1000000,1000000).
Таким образом, в этой модели мы имеем две проблемы – мультиколлинеарность и гетероскедастичность, в связи с чем нельзя доверять статистическим выводам и оценкам качества регрессионной модели.Продолжим дальнейший анализ модели с помощью теста Парка. Данный тест не предполагает особой свободы выбора и мы строим три регрессионные модели натуральных логарифмов остатков базовой модели на натуральные логарифмы каждой объясняющей переменной отдельно.
Представим вспомогательную модель 1 теста Парка:
Запишем уравнение вспомогательной модели 1:
Где:
POPUL2=ln (population^2)
BIRTH2=ln(birth).
Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику:
Найдем критическое значение t-статистики на уровне значимости
(
)После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Birth в следствие того, что коэффициент
при данной переменной является значимым.Представим вспомогательную модель 2 теста Парка:
Где:
POPUL2=ln (population^2)
MORTALITY2=ln(mortality).
Запишем уравнение вспомогательной модели 2:
Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости (
)После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Mortality в следствие того, что коэффициент
при данной переменной является значимым.Представим вспомогательную модель 3 теста Парка:
Где:
POPUL2=ln (population^2)
OLD2=ln(old).
Запишем уравнение вспомогательной модели 2:
Оценим значимость коэффициентов уравнения регрессии. Для этого оценим t-статистику. Найдем критическое значение t-статистики на уровне значимости (
)После проведенного теста можно сделать вывод о наличии гетероскедастичности по переменной Old в следствие того, что коэффициент
при данной переменной является значимым.