Смекни!
smekni.com

Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка (стр. 3 из 3)

Оценив каждую переменную по тесту парка в отдельности подтверждаем выводы сделанные ранее по тесту Вайта о гетероскедастичности исходной модели.

Теперь используем тест Бреуша-Пагана для окончательного подтвержения гетероскедастичности. Для начала строим временной ряд квадратов остатков, деленных на величину

а затем строим для него саму регрессионную модель.


Находим необходимые для анализа параметры вспомогательной регрессии:

Делаем вывод об очевидном присутствии в модели гетероскедастичности, так как

>>

Устранение гетероскедастичности в модели

После проведения тестовВайта, Бреуша-Пагана-Годфри и Парка было выявлено очевидное наличие проблемы гетероскедастичности остатков в базовой модели регрессии. Приступим к ее устранению при помощи веса, выбранного соответственно тесту Бреуша-Пагана. Предпологаем форму выявленной гетероскедастичности:

Вес:

Оцененная с помощью метода взвешанных наименьших квадратов базовая регрессия выглядит следующим образом:

Получим следующее уравнение построенной модели-NEW:


Где переменные, скорректированные на вес:

PopulationNEW – общая численность населения на начало 2008г. (чел.),

cNEW – константа базовой модели, деленная на вес,

BirthNEW – численность рожденных детей за 2007г. (чел.),

MortalityNEW – численность умерших за 2007г. (чел),

OldNEW – численность населения в возрасте от 65 лет и старше (чел.).

Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику. Используем в данном случае уровень значимости

. Тогда критическое значение t-статистики соответственно:

Если значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. Лишь одна переменная, являющаяся в прошлой базовой модели константой в данном случае незначима, что логично, ведь она не имеет реального смысла, т.е. не описывает реальным образом объясняемую переменную. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.

Продолжая оценивать общее качество модели, используем критерий Фишера:


Н0: R-квадрат=0

Н1: R-квадрат>0

Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна.

Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.

1) Первоначально воспользуемся тестомБреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:

Запишем значение

распределения для последующего сравнения с Obs* R-squared:

Приведем результаты теста с lag = 1:

с lag = 2:

с lag = 3:

Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше

а P-вероятность статистики Бреуша-Годфри больше уровня значимости

(

)

2) Воспользуемся также тестом Дарбина-Уотсона:

Приведем значение статистики:

Значения критических точек

при уровне значимости
:

Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-Wв данном случае близко к 2.

Проверим скорректированную модель на наличие гетероскедастичности с помощью теста Вайта

Т.к. значение P- вероятности в обоих случаях теста Уайта (nocrossterms/ crossterms) больше уровня значимости

(

)

и Obs* R-squared превышает


то принимаем гипотезу об отсутствии гетероскедастичности в модели (гомоскедастичность).


Заключение

В моей курсовой работе я построила регрессионную модель по реальным данным. Я разбиралась с моделью зависимости общей численности населения от показателей рождаемости, смертности и численности пожилого населения, их влиянием друг на друга и на объясняемую переменную. Так как целью моей работы являлось проверить, как работают на практике тесты Уайта и Бреуша-Пагана-Годфри и Парка, то я использовала пространственные данные, которые позволяют наиболее наглядно проиллюстрировать проблему гетероскедастичности и способы ее устранения.

В работе достаточно наглядно продемонстрирована работа тестов для выявления гетероскедастичности, также удалось решить задачу с выбором веса для ВНК.

В ходе курсовой работы мне удалось скорректировать модель с помощью метода взвешенных наименьших квадратов, правильно подобрав вес при помощи теста Бреуша-Пагана, поскольку тест Вайта, к примеру, не дает нам точного ответа на вопрос о весе для ВНК. Построенная в конце моего исследования модель-NEW значима и является качественной, остатки ее в свою очередь гомоскедастичны.


Список использованных источников:

1. Бородич С.А. Вводный курс эконометрики: Учеб. пособие. – Мн.; БГУ, 2000. – 209, 227, 245 с.

2. Бородич С.А. Эконометрика: Учеб. пособие. – Мн.; Новое знание, 2006. – 237, 238 с.

3. Доугерти К. Введение в эконометрику: Пер. с англ. – М.; ИНФРА-М, 1997.

4. Данные Eurostathttp://epp.eurostat.ec.europa.eu/potal.