(где U - сумма рангов элементов первой выборки в объединенной выборке; первая выборка составлена из внутрикластерных расстояний (мер близости) d(ai,aj), 1<i<j<k, и d(ba,bb), 1<a<b<m, а вторая - из межкластерных расстояний d(ai,ba), 1<i<k, 1<a<m) сходится к стандартному нормальному распределению с математическим ожиданием 0 и дисперсией 1.
На основе теоремы 1 очевидным образом формулируется правило проверки обоснованности объединения двух кластеров. Другими словами, мы проверяем статистическую гипотезу, согласно которой объединение двух кластеров образует однородную совокупность. Если величина U слишком мала, статистическая гипотеза однородности отклоняется (на заданном уровне значимости), и возможность объединения отбрасывается. Таким образом, хотя расстояния между объектами в кластерах зависимы, но эта зависимость слаба, и доказана математическая теорема о допустимости применения критерия Вилкоксона для проверки возможности объединения кластеров.
О вычислительной сходимости алгоритмов кластер-анализа. Алгоритмы кластер-анализа и группировки зачастую являются итерационными. Например, формулируется правило улучшения решения задачи кластер-анализа шаг за шагом, но момент остановки вычислений не обсуждается. Примером является известный алгоритм "Форель", в котором постепенно улучшается положение центра кластера. В этом алгоритме на каждом шагу строится шар определенного заранее радиуса, выделяются элементы кластеризуемой совокупности, попадающие в этот шар, и новый центр кластера строится как центр тяжести выделенных элементов. При анализе алгоритма «Форель» возникает проблема: завершится ли процесс улучшения положения центра кластера через конечное число шагов или же он может быть бесконечным. Она получила название «проблема остановки». Для широкого класса так называемых "эталонных алгоритмов" проблема остановки была решена в работе [8]: процесс улучшения остановится через конечное число шагов.
Отметим, что алгоритмы кластер-анализа могут быть модифицированы разнообразными способами. Например, описывая алгоритм "Форель" в стиле статистики объектов нечисловой природы, заметим, что вычисление центра тяжести для совокупности многомерных точек – это нахождение эмпирического среднего для меры близости, равной квадрату евклидова расстояния. Если взять более естественную меру близости – само евклидово расстояние, то получим алгоритм кластер-анализа "Медиана", отличающийся от "Форели" тем, что новый центр строится не с помощью средних арифметических координат элементов, попавших в кластер, а с помощью медиан.
Проблема остановки возникает не только при построении диагностических классов. Она принципиально важна, в частности, и при оценивании параметров вероятностных распределений методом максимального правдоподобия. Обычно не представляет большого труда выписать систему уравнений максимального правдоподобия и предложить решать ее каким-либо численным методом. Однако когда остановиться, сколько итераций сделать, какая точность оценивания будет при этом достигнута? Общий ответ, видимо, невозможно найти, но обычно нет ответа и для конкретных семейств распределения вероятностей. Именно поэтому мы нет оснований рекомендовать решать системы уравнений максимального правдоподобия, вместо них целесообразно использовать т.н. одношаговые оценки (подробнее см. об этих оценках работу [12]). Эти оценки задаются конечными формулами, но асимптотически столь же хороши (на профессиональном языке - эффективны), как и оценки максимального правдоподобия.
О сравнении алгоритмов диагностики по результатам обработки реальных данных. Перейдем к этапу применения диагностических правил, когда классы, к одному из которых нужно отнести вновь поступающий объект, уже выделены.
В прикладных эконометрических исследованиях применяют различные методы дискриминантного анализа, основанные на вероятностно-статистических моделях, а также с ними не связанные, т.е. эвристические, использующие детерминированные методы анализа данных. Независимо от "происхождения", каждый подобный алгоритм должен быть исследован как на параметрических и непараметрических вероятностно-статистических моделях порождения данных, так и на различных массивах реальных данных. Цель исследования - выбор наилучшего алгоритма в определенной области применения, включение его в стандартные программные продукты, методические материалы, учебные программы и пособия. Но для этого надо уметь сравнивать алгоритмы по качеству. Как это делать?
Часто используют такой показатель качества алгоритма диагностики, как "вероятность правильной классификации" (при обработке конкретных данных - "частота правильной классификации"). Чуть ниже мы покажем, что этот показатель качества некорректен, а потому пользоваться им не рекомендуется. Целесообразно применять другой показатель качества алгоритма диагностики - оценку специального вида т.н. "расстояния Махаланобиса" между классами. Изложение проведем на примере разработки программного продукта для специалистов по диагностике материалов. Прообразом является диалоговая система «АРМ материаловеда», разработанная Институтом высоких статистических технологий и эконометрики для ВНИИ эластомерных материалов.
При построении информационно-исследовательской системы диагностики материалов (ИИСДМ) возникает задача сравнения прогностических правил «по силе». Прогностическое правило - это алгоритм, позволяющий по характеристикам материала прогнозировать его свойства. Если прогноз дихотомичен («есть» или «нет»), то правило является алгоритмом диагностики, при котором материал относится к одному из двух классов. Ясно, что случай нескольких классов может быть сведен к конечной последовательности выбора между двумя классами.
Прогностические правила могут быть извлечены из научно-технической литературы и практики. Каждое из них обычно формулируется в терминах небольшого числа признаков, но наборы признаков сильно меняются от правила к правилу. Поскольку в ИИСДМ должно фиксироваться лишь ограниченное число признаков, то возникает проблема их отбора. Естественно отбирать лишь те их них, которые входят в наборы, дающие наиболее «надежные» прогнозы. Для придания точного смысла термину «надежный» необходимо иметь способ сравнения алгоритмов диагностики по прогностической "силе".
Результаты обработки реальных данных с помощью некоторого алгоритма диагностики в рассматриваемом случае двух классов описываются долями: правильной диагностики в первом классе
; правильной диагностики во втором классе ; долями классов в объединенной совокупностиВеличины
определяются ретроспективно.Нередко как показатель качества алгоритма диагностики (прогностической «силы») используют долю правильной диагностики
Однако показатель
определяется, в частности, через характеристики и частично заданные исследователем (например, на них влияет тактика отбора образцов для изучения). В аналогичной медицинской задаче величина оказалась больше для тривиального прогноза (у всех больных течение заболевания будет благоприятно), чем для использованного в работе [13] группы под руководством академика АН СССР И.М. Гельфанда алгоритма выделения больных с прогнозируемым тяжелым течением заболевания, применение которого с медицинской точки зрения вполне оправдано. Другими словами, по доле правильной классификации алгоритм академика И.М. Гельфанда оказался хуже тривиального - объявить всех больных легкими, не требующими специального наблюдения. Этот вывод нелеп. И причина появления нелепости понятна. Хотя доля тяжелых больных невелика, но смертельные исходы сосредоточены именно в этой группе больных. Поэтому целесообразна гипердиагностика - рациональнее часть легких больных объявить тяжелыми, чем сделать ошибку в противоположную сторону. Применение теории статистических решений в рассматриваемой постановке вряд ли возможно, поскольку оценить количественно потери от смерти больного нельзя по этическим соображениям. Поэтому, на наш взгляд, долю правильной диагностики нецелесообразно использовать как показатель качества алгоритма диагностики.Применение теории статистических решений требует знания потерь от ошибочной диагностики, а в большинстве научно-технических и экономических задач определить потери, как уже отмечалось, сложно. В частности, из-за необходимости оценивать человеческую жизнь в денежных единицах. По этическим соображениям это, на наш взгляд, недопустимо. Сказанное не означает отрицания пользы страхования, но, очевидно, страховые выплаты следует рассматривать лишь как способ первоначального смягчения потерь от утраты близких.
Для выявления информативного набора признаков целесообразно использовать метод пересчета на модель линейного дискриминантного анализа, согласно которому статистической оценкой прогностической "силы" является