Смекни!
smekni.com

Моделирование и прогнозирование естественного прироста населения в РФ (стр. 3 из 4)

Построим модель регрессии с включением фактора времени и фиктивных переменных для данных о естественном приросте населения в РФ. В данной модели двенадцать независимых переменных: t, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12 и результативная переменная Y. Составим матрицу исходных данных (Приложение 6).

Уравнение регрессии имеет вид:

Ŷt = -89444,083 + 1132,083 · t + 24047,583 ·D2 + 17218,167 ·D3 + 21431,750 ·D4 + 15077,333 ·D5 + 26904,583 ·D6 + 40734,833 ·D7 + 43809,083 ·D8 + 38606,667 ·D9 + 32848,917 ·D10 + 26662,833 ·D11 + 24437,083 ·D12

R2 = 0,960

Уравнение описывает на 96,0% вариацию исходного показателя естественного прироста, уравнение статистически значимо при уровне надежности 95%.

Оценим параметры уравнения регрессии обычным МНК. Результаты оценки приведены в Таблице 8.

Таблица 8 - Статистика уравнения для модели с фиктивными переменными

Коэффициенты Стандартная ошибка t-статистика P-Значение
Y-пересечение -89444,083 2879,238 -31,065 2,76051E-20
t 1132,083 79,218 14,291 6,2844E-13
D2 24047,583 3803,309 6,323 1,8825E-06
D3 17218,167 3805,783 4,524 0,000152385
D4 21431,750 3809,903 5,625 1,00291E-05
D5 15077,333 3815,664 3,951 0,000634609
D6 26904,583 3823,058 7,037 3,59459E-07
D7 40734,833 3832,075 10,630 2,38467E-10
D8 43809,083 3842,705 11,401 6,10242E-11
D9 38606,667 3854,934 10,015 7,43321E-10
D10 32848,917 3868,747 8,491 1,52119E-08
D11 26662,833 3884,126 6,865 5,33422E-07
D12 24437,083 3901,054 6,264 2,16207E-06

Проанализируем эти результаты. Все коэффициенты уравнения и само уравнение статистически значимы при уровне надежности 95%.

Исходя из значений выше приведенных показателей качества, можно сделать вывод о том, что модель обладает высокой точностью и пригодна для прогнозирования.


2.6 Адаптивная сезонная модель Тейла – Вейджа

Рассмотрим аддитивную модель сезонных явлений с линейным ростом, предложенную Г. Тейлом и С. Вейджем. Параметры адаптации определим методом последовательных итераций, исходя из принципа минимизации средней ошибки аппроксимации модели. В результате получим следующие значения: α1= 0,9; α2 = 0,1; α3 = 0,1.

Тренд – линейный, уравнение тренда выглядит следующим образом:

T = -67660,089 + 1358,979 ·t; R2 = 0,579

Начальные условия для нулевого цикла представлены в таблице 9:

Таблица 9 -Начальные условия

i ĝi0 i ĝi0
1 -24733,642 7 14639,816
2 -912,954 8 17487,170
3 -7969,267 9 12057,857
4 -3982,580 10 6073,211
5 -10563,892 11 -339,768
6 1036,462 12 -2792,414

Исходя из значений выше приведенных показателей качества, можно сделать вывод о том, что модель обладает высокой точностью и пригодна для прогнозирования.

2.7 Прогнозирование естественного прироста населения

Рассмотрим прогнозные значения естественного прироста населения в РФ по вышеописанным моделям, сравним полученные значения с фактическими, и выберем наиболее адекватную и точную модель для целей прогнозирования (Таблица 10).

Для оценки точности каждого прогноза рассчитаем среднюю относительную ошибку прогноза по формуле:

Таблица 10 - Прогнозные значения

Адд. модель Мультипл. модель Ряд Фурье Модель с фикт. переменными Адапт. модель Тейла-Вейджа Фактические значения
Январь 2009 -41595 -29184 -38887 -47557 -46805 -47976
Февраль 2009 -19866 -18134 -31056 -22377 -22944 -24401
Март 2009 -29093 -21475 -21699 -28075 -29994 -32121
Апрель 2009 -24284 -18459 -23375 -22729 -26006 -27017
Май 2009 -27749 -19177 -24958 -27951 -32588 -28463
Июнь 2009 -15685 -13678 -13849 -14992 -20989 -19821
Июль 2009 -304 -8598 -86 -30 -7384 -4237
Август 2009 3999 -6886 2590 4177 -4539 1050
Сентябрь 2009 2212 -6624 -348 106 -9968 -3263
Октябрь 2009 -5701 -7484 -426 -4519 -15951 -12170
Ноябрь 2009 -9688 -7452 -4684 -9573 -22368 -25891
Декабрь 2009 -9265 -6350 -17547 -10667 -24818 -25116
Средняя относит. ошибка прогноза (%) 66,260 111,627 56,422 62,296 74,758 -

Исходя из показателя средней относительной ошибки прогноза, можно сделать вывод о том, что показатель естественного прироста населения наиболее точно прогнозируется рядом Фурье.


Заключение

В ходе работы было проведено моделирование и прогнозирование естественного прироста населения в РФ. Исследование было проведено с помощью следующих моделей:

· Аддитивная модель;

· Мультипликативная модель;

· Одномерный анализ Фурье;

· Регрессионная модель с переменной структурой (фиктивные переменные);

· Адаптивная сезонная модель.

Выдвинутая гипотеза о возрастающей тенденции динамики изменения естественного прироста населения в РФ в 2009 году подтверждается.

По каждой модели сделан прогноз на 2009 год, при этом следует отметить, что наиболее точный прогноз дает модель с использованием ряда Фурье, в тоже время вариацию исходного показателя наиболее точно описывает адаптивная модель Тейла – Вейджа. Также можно сделать вывод о том, что для получения наиболее достоверного прогноза показателя необходимо комбинировать прогнозные значения нескольких наиболее точных моделей.


Список литературы

1. StatSoft // http://www.statsoft.ru/

2. Агентство АКДИ // http://www.akdi.ru/

3. Концепция демографической политики Российской Федерации на период до 2015 года // http://www.akdi.ru/econom/program/demogr.htm

4. Концепция долгосрочного социально-экономического развития Российской Федерации на период до 2020 года // http://www.youngscience.ru/753/820/978/index.shtml

5. МеньшоваИ.В. Моделирование экономических процессов методами регрессионного анализа.- Воскресенск: Издательский дом «Лира», 2009. - 113 с.

6. Президент России молодым ученым и специалистам // http://www.youngscience.ru/

7. Федеральная служба государственной статистики // http://www.gks.ru/

8. Эконометрика: учебник / И.И. Елисеева, С.В. Курышев, Т.В. Костеева и др.; под ред. И.И. Елисеевой. – 2-е изд. - М.: Финансы и статистика, 2007. – 576 с.


Приложение 1


Приложение 2


Приложение 3

Год Месяц t Yt Скользящее среднее Центрир. скользящее среднее К-т сезонности Скорр.сезонная компонента S Десезон-й естественный прирост Тренд T Ошибка E
2006 Январь 1 - 99 636 -20480,000 -79156,000 -62766,038 -16389,962
Февраль 2 - 67 539 92,000 -67631,000 -61609,063 -6021,937
Март 3 - 65 908 -10291,958 -55616,042 -60452,088 4836,046
Апрель 4 - 59 589 -6639,813 -52949,188 -59295,113 6345,925
Май 5 - 68 708 -11262,333 -57445,667 -58138,137 692,471
Июнь 6 - 53 946 -57460,083 -355,333 -53590,667 -56981,162 3390,495
Июль 7 - 41 476 -54601,333 -56030,708 14554,708 13869,083 -55345,083 -55824,187 479,104
Август 8 - 36 599 -52786,417 -53693,875 17094,875 17015,208 -53614,208 -54667,212 1053,003
Сентябрь 9 - 40 643 -51877,583 -52332,000 11689,000 14070,708 -54713,708 -53510,237 -1203,472
Октябрь 10 - 51 480 -51196,333 -51536,958 56,958 5001,646 -56481,646 -52353,261 -4128,384
Ноябрь 11 - 51 660 -49769,000 -50482,667 -1177,333 -142,500 -51517,500 -51196,286 -321,214
Декабрь 12 - 52 337 -48446,500 -49107,750 -3229,250 -876,708 -51460,292 -50039,311 -1420,981
2007 Январь 13 - 65 331 -47241,083 -47843,792 -17487,208 -20480,000 -44851,000 -48882,336 4031,336
Февраль 14 - 45 760 -46072,000 -46656,542 896,542 92,000 -45852,000 -47725,361 1873,361
Март 15 - 55 002 -44534,667 -45303,333 -9698,667 -10291,958 -44710,042 -46568,385 1858,344
Апрель 16 - 51 414 -42556,917 -43545,792 -7868,208 -6639,813 -44774,188 -45411,410 637,223
Май 17 - 51 580 -41251,917 -41904,417 -9675,583 -11262,333 -40317,667 -44254,435 3936,768
Июнь 18 - 38 076 -39806,750 -40529,333 2453,333 -355,333 -37720,667 -43097,460 5376,793
Июль 19 - 27 011 -39297,000 -39551,875 12540,875 13869,083 -40880,083 -41940,485 1060,401
Август 20 - 22 570 -38428,917 -38862,958 16292,958 17015,208 -39585,208 -40783,509 1198,301
Сентябрь 21 - 22 195 -37580,750 -38004,833 15809,833 14070,708 -36265,708 -39626,534 3360,826
Октябрь 22 - 27 747 -36520,750 -37050,750 9303,750 5001,646 -32748,646 -38469,559 5720,913
Ноябрь 23 - 36 000 -35978,750 -36249,750 249,750 -142,500 -35857,500 -37312,584 1455,084
Декабрь 24 - 34 995 -35677,750 -35828,250 833,250 -876,708 -34118,292 -36155,609 2037,317
2008 Январь 25 - 59 214 -34519,500 -35098,625 -24115,375 -20480,000 -38734,000 -34998,633 -3735,367
Февраль 26 - 35 343 -33456,250 -33987,875 -1355,125 92,000 -35435,000 -33841,658 -1593,342
Март 27 - 44 824 -33136,083 -33296,167 -11527,833 -10291,958 -34532,042 -32684,683 -1847,359
Апрель 28 - 38 694 -32143,917 -32640,000 -6054,000 -6639,813 -32054,188 -31527,708 -526,480
Май 29 - 45 076 -31024,750 -31584,333 -13491,667 -11262,333 -33813,667 -30370,733 -3442,934
Июнь 30 - 34 464 -30290,083 -30657,417 -3806,583 -355,333 -34108,667 -29213,758 -4894,909
Июль 31 - 13 112 13869,083 -26981,083 -28056,782 1075,699
Август 32 - 9 811 17015,208 -26826,208 -26899,807 73,599
Сентябрь 33 - 18 353 14070,708 -32423,708 -25742,832 -6680,876
Октябрь 34 - 15 841 5001,646 -20842,646 -24585,857 3743,211
Ноябрь 35 - 22 570 -142,500 -22427,500 -23428,882 1001,382
Декабрь 36 - 26 179 -876,708 -25302,292 -22271,906 -3030,385

Приложение 4