Смекни!
smekni.com

Составление и решение уравнений линейной регрессии (стр. 3 из 3)

3) В третьем уравнении две эндогенные переменные у2, у3 (Н=2). В нем отсутствует экзогенная переменная х4 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у1 и х4 (табл. 9)

Таблица 9

Уравнения, из которых взяты коэффициенты при переменных Переменные
у1 х4
1 -1 0
2 0 a24

Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, третье уравнение идентифицируемо.

Вывод: все уравнения системы идентифицируемы, систему можно решать.

Задача 2б

Решение

Запишем систему уравнений:

у1=b13у3+a11 х1+a13 х3+a14 х4

у2= b21 у1+b23 у3+a22 х2+a24 х4

у3=b31 у1+a31 х1+a33 х3+a34 х4

Проверим каждое уравнение на выполнение необходимого и достаточного условия идентификации.

1) В первом уравнении две эндогенные переменные у1, у3 (Н=2). В нем отсутствует экзогенная переменная х2 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у2 и х2 (табл. 10)

Таблица 10

Уравнения, из которых взяты коэффициенты при переменных Переменные
у2 х2
2 -1 a22
3 -1 0

Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.

2) Во втором уравнении три эндогенные переменные у1, у2, у3 (Н=3). В нем отсутствуют экзогенные переменные х1, х3 (D=2). Необходимое условие идентификации D+1=H, 2+1=3 выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных х1 и х3 (табл. 11)

Таблица 11

Уравнения, из которых взяты коэффициенты при переменных Переменные
х1 х3
1 a11 а13
3 a31 a33

Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.

3) В третьем уравнении две эндогенные переменные у1, у3 (Н=2). В нем отсутствует экзогенная переменная х2 (D=2). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у2 и х2 (табл. 12)


Таблица 12

Уравнения, из которых взяты коэффициенты при переменных Переменные
у2 х2
1 0 0
2 -1 a22

Определитель матрицы равен нулю (первая строка состоит из нулей). Значит, достаточное условие не выполнено, и третье уравнение нельзя считать идентифицируемым.

Вывод: не все уравнения системы идентифицируемы, систему решать нельзя.

Задача 2в

По данным таблицы для своего варианта, используя косвенный метод наименьших квадратов (КМНК), построить структурную форму модели вида:

y1= a01 + b12 y2 + a11 x1 + e1

y2= a02 + b21 y1 + a22 x2 + e2

Вар. n y1 y2 x1 x2
8 1 61,3 31,3 9 7
2 88,2 52,2 9 20
3 38,0 14,1 4 2
4 48,4 21,7 2 9
5 57,0 27,6 7 7
6 59,7 30,3 3 13

Решение

Для построения модели мы располагаем информацией, представленной в табл. 13.


Таблица 13. Фактические данные для построения модели

n y1 y2 x1 x2
1 61,3 31,3 9 7
2 88,2 52,2 9 20
3 38 14,1 4 2
4 48,4 21,7 2 9
5 57 27,6 7 7
6 59,7 30,3 3 13
Сумма 352,60 177,20 34,00 58,00
Среднее значение 58,77 29,53 5,67 9,67

Структурная форма модели преобразуется в приведенную форму:

у1=d11x1+d12x2+u1

y2=d21x1+d22x2+u2, где u1 и u2 – случайные ошибки.

Для каждого уравнения приведенной формы при расчете коэффициентов d можно применить МНК. Для упрощения расчетов можно работать с отклонениями от средних уровней у=у-уср и х=х-хср. Преобразованные таким образом данные табл. 13 сведены в табл. 14. Здесь же показаны промежуточные рассчеты, необходимые для определения коэффициентов d.

Таблица 14

n у1 у2 х1 х2 у1*х1 х12 х1*х2 у1*х2 у2*х1 у2*х2 х22
1 2,53 1,77 3,33 -2,67 8,444 11,111 -8,889 -6,756 5,889 -4,711 7,111
2 29,43 22,67 3,33 10,33 98,111 11,111 34,444 304,144 75,556 234,222 106,778
3 -20,77 -15,43 -1,67 -7,67 34,611 2,778 12,778 159,211 25,722 118,322 58,778
4 -10,37 -7,83 -3,67 -0,67 38,011 13,444 2,444 6,911 28,722 5,222 0,444
5 -1,77 -1,93 1,33 -2,67 -2,356 1,778 -3,556 4,711 -2,578 5,156 7,111
6 0,93 0,77 -2,67 3,33 -2,489 7,111 -8,889 3,111 -2,044 2,556 11,111
Σ 0,00 0,00 0,00 0,00 174,333 47,333 28,333 471,333 131,267 360,767 191,333

Для нахождения коэффициентов первого приведенного уравнения можно использовать систему нормальных уравнений:

Σу1х1=d11Σx12+d12Σx1x2;

Σy1x2=d11Σx1x2+d12Σx22.

Подставляя рассчитанные в табл. 14 значения сумм, получим:

174,333= 47,333d11+28,333d12

471,333=28,333d11+191,333d12.

Решение этих уравнений дает значения d11=2,423, d12=2,105. Первое уравнение приведенной формы примет вид: у1=2,423х1+2,105х2+u1.

Для нахождения коэффициентов второго приведенного уравнения можно использовать систему нормальных уравнений:

Σу2х1=d21Σx12+d22Σx1x2

Σy2x2=d21Σx1x2+d22Σx22

Подставляя рассчитанные в табл. 14 значения сумм, получим:

131,267=47,333d21+28,333d22

360,767=28,333d21+191,333d22.

Решение этих уравнений дает значения d21=1,805, d22=1,618. Второе уравнение приведенной формы примет вид: у2=1,805х1+1,618х2+u2

Для перехода от приведенной формы к структурной форме модели найдем х2из второго уравнения приведенной модели:

х2=(у2-1,805х1)/1,618.

Подставив это выражение в первое уравнение приведенной модели, найдем структурное уравнение:

у1=2,423х1+2,105 (у2-1,805х1)/1,618=2,423х1+1,3у2-1,115х1=1,3у2+1,308х1

Таким образом, b12=1,3 а11=1,308.

Найдем х1 из первого уравнения у1=2,423х1+2,105х2 приведенной формы:

х1=(у1-2,105х2)/2,423

Подставив это выражение во второе уравнение приведенной модели, найдем структурное уравнение:

у2=1,805 (у1-2,105х2)/2,423+1,618х2=0,745 у1-0,868х2 +1,618х2=0,745у1+0,75х2

Таким образом, b21= 0,745 а22=0,75

Свободные члены структурной формы находим из уравнений:

А011,ср-b12у2,ср11х1,ср=58,77 – 1,3*29,53–1,308*5,67=14,04

А022,ср-b21у1,ср22х2,ср=29,53–0,745*58,77–0,75*9,67=-5,83

Окончательный вид структурной модели:

y1= a01 + b12 y2 + a11 x1 + e1=14,04+1,3у2+1,308х1+e1;

y2= a02 + b21 y1 + a22 x2 + e2=-5,83+0,745у1+0,75х2+ e2.