3) В третьем уравнении две эндогенные переменные у2, у3 (Н=2). В нем отсутствует экзогенная переменная х4 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у1 и х4 (табл. 9)
Таблица 9
Уравнения, из которых взяты коэффициенты при переменных | Переменные | |
у1 | х4 | |
1 | -1 | 0 |
2 | 0 | a24 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, третье уравнение идентифицируемо.
Вывод: все уравнения системы идентифицируемы, систему можно решать.
Задача 2б
Решение
Запишем систему уравнений:
у1=b13у3+a11 х1+a13 х3+a14 х4
у2= b21 у1+b23 у3+a22 х2+a24 х4
у3=b31 у1+a31 х1+a33 х3+a34 х4
Проверим каждое уравнение на выполнение необходимого и достаточного условия идентификации.
1) В первом уравнении две эндогенные переменные у1, у3 (Н=2). В нем отсутствует экзогенная переменная х2 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у2 и х2 (табл. 10)
Таблица 10
Уравнения, из которых взяты коэффициенты при переменных | Переменные | |
у2 | х2 | |
2 | -1 | a22 |
3 | -1 | 0 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.
2) Во втором уравнении три эндогенные переменные у1, у2, у3 (Н=3). В нем отсутствуют экзогенные переменные х1, х3 (D=2). Необходимое условие идентификации D+1=H, 2+1=3 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных х1 и х3 (табл. 11)
Таблица 11
Уравнения, из которых взяты коэффициенты при переменных | Переменные | |
х1 | х3 | |
1 | a11 | а13 |
3 | a31 | a33 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.
3) В третьем уравнении две эндогенные переменные у1, у3 (Н=2). В нем отсутствует экзогенная переменная х2 (D=2). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у2 и х2 (табл. 12)
Таблица 12
Уравнения, из которых взяты коэффициенты при переменных | Переменные | |
у2 | х2 | |
1 | 0 | 0 |
2 | -1 | a22 |
Определитель матрицы равен нулю (первая строка состоит из нулей). Значит, достаточное условие не выполнено, и третье уравнение нельзя считать идентифицируемым.
Вывод: не все уравнения системы идентифицируемы, систему решать нельзя.
Задача 2в
По данным таблицы для своего варианта, используя косвенный метод наименьших квадратов (КМНК), построить структурную форму модели вида:
y1= a01 + b12 y2 + a11 x1 + e1
y2= a02 + b21 y1 + a22 x2 + e2
Вар. | n | y1 | y2 | x1 | x2 |
8 | 1 | 61,3 | 31,3 | 9 | 7 |
2 | 88,2 | 52,2 | 9 | 20 | |
3 | 38,0 | 14,1 | 4 | 2 | |
4 | 48,4 | 21,7 | 2 | 9 | |
5 | 57,0 | 27,6 | 7 | 7 | |
6 | 59,7 | 30,3 | 3 | 13 |
Решение
Для построения модели мы располагаем информацией, представленной в табл. 13.
Таблица 13. Фактические данные для построения модели
n | y1 | y2 | x1 | x2 |
1 | 61,3 | 31,3 | 9 | 7 |
2 | 88,2 | 52,2 | 9 | 20 |
3 | 38 | 14,1 | 4 | 2 |
4 | 48,4 | 21,7 | 2 | 9 |
5 | 57 | 27,6 | 7 | 7 |
6 | 59,7 | 30,3 | 3 | 13 |
Сумма | 352,60 | 177,20 | 34,00 | 58,00 |
Среднее значение | 58,77 | 29,53 | 5,67 | 9,67 |
Структурная форма модели преобразуется в приведенную форму:
у1=d11x1+d12x2+u1
y2=d21x1+d22x2+u2, где u1 и u2 – случайные ошибки.
Для каждого уравнения приведенной формы при расчете коэффициентов d можно применить МНК. Для упрощения расчетов можно работать с отклонениями от средних уровней у=у-уср и х=х-хср. Преобразованные таким образом данные табл. 13 сведены в табл. 14. Здесь же показаны промежуточные рассчеты, необходимые для определения коэффициентов d.
Таблица 14
n | у1 | у2 | х1 | х2 | у1*х1 | х12 | х1*х2 | у1*х2 | у2*х1 | у2*х2 | х22 |
1 | 2,53 | 1,77 | 3,33 | -2,67 | 8,444 | 11,111 | -8,889 | -6,756 | 5,889 | -4,711 | 7,111 |
2 | 29,43 | 22,67 | 3,33 | 10,33 | 98,111 | 11,111 | 34,444 | 304,144 | 75,556 | 234,222 | 106,778 |
3 | -20,77 | -15,43 | -1,67 | -7,67 | 34,611 | 2,778 | 12,778 | 159,211 | 25,722 | 118,322 | 58,778 |
4 | -10,37 | -7,83 | -3,67 | -0,67 | 38,011 | 13,444 | 2,444 | 6,911 | 28,722 | 5,222 | 0,444 |
5 | -1,77 | -1,93 | 1,33 | -2,67 | -2,356 | 1,778 | -3,556 | 4,711 | -2,578 | 5,156 | 7,111 |
6 | 0,93 | 0,77 | -2,67 | 3,33 | -2,489 | 7,111 | -8,889 | 3,111 | -2,044 | 2,556 | 11,111 |
Σ | 0,00 | 0,00 | 0,00 | 0,00 | 174,333 | 47,333 | 28,333 | 471,333 | 131,267 | 360,767 | 191,333 |
Для нахождения коэффициентов первого приведенного уравнения можно использовать систему нормальных уравнений:
Σу1х1=d11Σx12+d12Σx1x2;
Σy1x2=d11Σx1x2+d12Σx22.
Подставляя рассчитанные в табл. 14 значения сумм, получим:
174,333= 47,333d11+28,333d12
471,333=28,333d11+191,333d12.
Решение этих уравнений дает значения d11=2,423, d12=2,105. Первое уравнение приведенной формы примет вид: у1=2,423х1+2,105х2+u1.
Для нахождения коэффициентов второго приведенного уравнения можно использовать систему нормальных уравнений:
Σу2х1=d21Σx12+d22Σx1x2
Σy2x2=d21Σx1x2+d22Σx22
Подставляя рассчитанные в табл. 14 значения сумм, получим:
131,267=47,333d21+28,333d22
360,767=28,333d21+191,333d22.
Решение этих уравнений дает значения d21=1,805, d22=1,618. Второе уравнение приведенной формы примет вид: у2=1,805х1+1,618х2+u2
Для перехода от приведенной формы к структурной форме модели найдем х2из второго уравнения приведенной модели:
х2=(у2-1,805х1)/1,618.
Подставив это выражение в первое уравнение приведенной модели, найдем структурное уравнение:
у1=2,423х1+2,105 (у2-1,805х1)/1,618=2,423х1+1,3у2-1,115х1=1,3у2+1,308х1
Таким образом, b12=1,3 а11=1,308.
Найдем х1 из первого уравнения у1=2,423х1+2,105х2 приведенной формы:
х1=(у1-2,105х2)/2,423
Подставив это выражение во второе уравнение приведенной модели, найдем структурное уравнение:
у2=1,805 (у1-2,105х2)/2,423+1,618х2=0,745 у1-0,868х2 +1,618х2=0,745у1+0,75х2
Таким образом, b21= 0,745 а22=0,75
Свободные члены структурной формы находим из уравнений:
А01=у1,ср-b12у2,ср-а11х1,ср=58,77 – 1,3*29,53–1,308*5,67=14,04
А02=у2,ср-b21у1,ср-а22х2,ср=29,53–0,745*58,77–0,75*9,67=-5,83
Окончательный вид структурной модели:
y1= a01 + b12 y2 + a11 x1 + e1=14,04+1,3у2+1,308х1+e1;
y2= a02 + b21 y1 + a22 x2 + e2=-5,83+0,745у1+0,75х2+ e2.