— сумма частот ряда;
— сумма накопленных частот ряда, предшествующих медианному интервалу;
— частота медианного интервала.
Пример 7. По данным примера 6 рассчитать медиану.
Решение. Определяем медианный интервал, в котором находится порядковый номер медианы. Для этого подсчитаем сумму частот накопленным итогом до числа, превышающего половину объема совокупности (200/2 = 100).
В графе «Сумма накопленных частот» значение 110 соответствует интервалу 700—800. Это и есть медианный интервал, в котором находится медиана.
Из расчета видно, что половина работников предприятия имеют заработную плату до 785,7 руб., а половина — выше этой суммы.
Показатели вариации. Для измерения степени колеблемости отдельных значений признака от средней исчисляются основные обобщающие показатели вариации: дисперсия, среднее квадратическое отклонение и коэффициент вариации.
Дисперсия — это средняя арифметическая квадратов отклонений отдельных значений признака от их средней арифметической.
В зависимости от исходных данных дисперсия вычисляется по формуле средней арифметической простой или взвешенной:
- невзвешенная (простая);
- взвешенная.
Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и равно:
— невзвешенное;
— взвешенное.
В отличие от дисперсии среднее квадратическое отклонение является абсолютной мерой вариации признака в совокупности и выражается в единицах измерения варьирующего признака (рублях, тоннах, процентах и т.д.).
Для сравнения размеров вариации различных признаков, а также для сравнения степени вариации одноименных признаков в нескольких совокупностях исчисляется относительный показатель вариации — коэффициент вариации (V), который представляет; собой процентное отношение среднего квадратического отклонения к средней арифметической:
По величине коэффициента вариации можно судить о степени вариации признаков, а следовательно, об однородности состава совокупности. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по составу.
Пример 8. Имеются выборочные данные о стаже работников коммерческих банков:
стаж, лет | Среднесписочнаячисленностьработников, чел. f | Середина интервала | ||||
до 33-55-77-9свыше 9 | 104828104 | 246810 | 201921688040 | -3-1135 | 911925 | 90482890100 |
Итого | 100 | - | 500 | - | - | 356 |
Определить:
1) средний стаж работников;
2) дисперсию;
3) среднее квадратическое отклонение;
4) коэффициент вариации.
Решение. 1. Средний стаж работников
x =500/100 =5 лет.
2. Дисперсия
356/100 =3,56 3,6;
3. Среднее квадратическое отклонение = 356/100 = 3.6 = 1,8867.
4. Коэффициент вариации = 1,8867/5-100=37,7%.
Правило сложения дисперсий (вариаций). Для статистической совокупности, сгруппированной по изучаемому признаку, возможно вычисление трех видов дисперсий: общей, частных (внутригрупповых) - и межгрупповой. Общая дисперсия характеризует вариацию всех единиц совокупности от общей средней, частные - вариацию признака в группах от групповой средней и межгрупповая — вариацию групповых средних от общей средней. Между указанными видами дисперсий существует соотношение, которое называют правилом сложения дисперсий: общая дисперсия равна сумме средней из частных дисперсий и межгрупповой:
Если основанием группировки является факторный признак, то с помощью правила сложения дисперсий можно измерить силу его влияния на результативный признак, вычислив коэффициент детерминации и эмпирическое корреляционное отношение.
Коэффициент детерминации равен отношению межгрупповой дисперсии к общей и показывает долю общей вариации результативного признака, обусловленную вариацией группировочного признака.
Корень квадратный из коэффициента детерминации называется эмпирическим корреляционным отношением:
По абсолютной величине он может изменяться от 0 до 1. Если = 0, группировочный признак не оказывает влияния на результативный. Если = 1, изменение результативного признака полностью обусловлено группировочным признаком, т.е. между ними существует функциональная связь.
Пример 9. По данным выборочного обследования заработной платы работников бюджетной сферы получены следующие показатели:
Отрасль | Средняя заработная плата, руб. | Численность работников, чел. f | Дисперсия заработной платы |
Здравоохранение Образование | 600 800 | 80120 | 4 900 16900 |
Определить:
1) среднюю заработную плату работников по двум отраслям;
2) дисперсии заработной платы: а) среднюю из групповых дисперсий (отраслевых), б) межгрупповую (межотраслевую), в) общую;
3) коэффициент детерминации и эмпирическое корреляционное отношение.
Решение. 1. Средняя заработная плата работников по двум отраслям равна
2. а) Средняя из групповых дисперсий равна
б) Межгрупповая дисперсия равна
в) Применяя правила сложения дисперсий, получим общую дисперсию:
а) Коэффициент детерминации равен 0,4424, или 44,24%.
Он показывает, что оплата труда на 44,24% зависит от отраслевой принадлежности работников и на 55,76% — от внутриотраслевых причин.
б) Эмпирическое корреляционное отношение составляет, что свидетельствует о существенном влиянии на дифференциацию заработной платы отраслевых особенностей.
Список использованной литературы
1. Гусаров В.М. Теория статистики: Учебное пособие для вузов. – М.: Аудит, ЮНИТИ, 1998. – 247 с
2. Общая теория статистики Учеб. для вузов / В.С. Козло, Я.М. Эрлих и др. М.: Финансы и статистика, 1985
3. Практикум по статистике: Учебное пособие для вузов / под редакцией В.М. Симчеры / ВЗФЭИ. – М.: ЗАО "Финстатинформ", 1999. – 259 с
4. Ряузов Н.Н. Общая теория статистики: Учеб. для вузов. – М.: Финансы и статистика, 1984
5. Теория статистика: Учеб. для вузов / Под ред. Р.А. Шмойловой. – М.: Финансы и статистика, 1996