F-критическое | 5,317655 |
Видно, что F-статистика меньше, чем F-критическое, значит, регрессионная модель не адекватна. В последней строке приведены регрессионная сумма квадратов
и остаточные суммы квадратов . Важно, чтобы регрессионная сумма (объясненная регрессией) была намного больше остаточной (не объясненная регрессией, вызванная случайными факторами). В нашем случае это условие не выполняется, что говорит о плохой регрессии.Вывод:В ходе работы я освоил методы построения линейного уравнения парной регрессии с помощью ЭВМ, научился получать и анализировать основные характеристики регрессионного уравнения.
Лабораторная работа № 4
НЕЛИНЕЙНАЯ РЕГРЕССИЯ
Цель: освоить методы построения основных видов нелинейных уравнений парной регрессии с помощью с помощью ЭВМ (внутренне линейные модели), научиться получать и анализировать показатели качества регрессионных уравнений.
Рассмотрим случай, когда нелинейные модели с помощью преобразования данных можно свести к линейным (внутренне линейные модели).
ПРИМЕР. Построить уравнение регрессии у = f(х) для выборки хп уп (f = 1,2,…,10). В качестве f(х) рассмотреть четыре типа функций – линейная, степенная, показательная и гиперболу:
у = Ах + В; у = АхВ; у = АеВх; у = А/х + В.
Необходимо найти их коэффициенты А и В, и сравнив показатели качества, выбрать функцию, которая наилучшим образом описывает зависимость.
Прибыль Y | 0,3 | 1,2 | 2,8 | 5,2 | 8,1 | 11,0 | 16,8 | 16,9 | 24,7 | 29,4 |
Прибыль X | 0,25 | 0,50 | 0,75 | 1,00 | 1,25 | 1,50 | 1,75 | 2,00 | 2,25 | 2,50 |
Введем данные в таблицу вместе с подписями (ячейки A1-K2). Оставим свободными три строчки ниже таблицы для ввода преобразованных данных, выделим первые пять строк, проведя по левой серой границе по числам от 1 до 5 и выбрать какой-либо цвет (светлый – желтый или розовый) раскрасить фон ячеек. Далее, начиная с A6, выводим параметры линейной регрессии. Для этого в ячейку A6 делаем подпись «Линейная» и в соседнюю ячейку B6 вводим функцию ЛИНЕЙН. В полях «Изв_знач_x» даем ссылку на B2-K2 и B1-K1, следующие два поля принимают значения по единице. Далее обводим область ниже в 5 строчек и левее в 2 строки и нажимаем F2 и Ctrl+Shift+Enter. Результат - таблица с параметрами регрессии, из которых наибольший интерес представляет коэффициент детерминации в первом столбце третий сверху. В нашем случае он равен R1 = 0,951262. Значение F-критерия, позволяющего проверить адекватность модели F1 = 156,1439
(четвертая строка, первый столбец). Уравнение регрессии равно
y = 12,96x+6,18 (коэффициенты a и b приведены в ячейках B6 и C6).
Линейная | 12,96 | -6,18 |
1,037152 | 1,60884 | |
0,951262 | 2,355101 | |
156,1439 | 8 | |
866,052 | 44,372 |
Определим аналогичные характеристики для других регрессий и в результате сравнения коэффициентов детерминации найдем лучшую регрессионную модель. Рассмотрим гиперболическую регрессию. Для ее получения преобразуем данные. В третьей строке в ячейку A3 введем подпись «1/x» а в ячейку B3 введем формулу «=1/B2». Растянем автозаполнением данную ячейку на область B3-K3. Получим характеристики регрессионной модели. В ячейку А12 введем подпись «Гипербола», а в соседнюю функцию ЛИНЕЙН. В полях «Изв_знач_y» и «Изв_знач_x2 даем ссылку на B1-K1 и преобразованные данные аргумента x – B3-K3, следующие два поля принимают значения по единице. Далее обводим область ниже 5 строчек и левее в 2 строки и нажимаем F2 и Ctrl+Shift+Enter. Получаем таблицу параметров регрессии. Коэффициент детерминации в данном случае равен R2 = 0,475661, что намного хуже, чем в случае линейной регрессии. F-статистика равна F2 = 7,257293. Уравнение регрессии равно y = -6,25453x18,96772.
Гипербола | -6,25453 | 18,96772 |
2,321705 | 3,655951 | |
0,475661 | 7,724727 | |
7,257293 | 8 | |
433,0528 | 477,3712 |
Рассмотрим экспоненциальную регрессию. Для ее линеаризации получаем уравнение
, где ỹ = lny, ã = b, = lna. Видно, что надо сделать преобразование данных – yзаменить на lny. Ставим курсор в ячейку А4 и делаем заголовок «lny». Ставим курсор в В4 и вводим формулу LN (категория «Математические»). В качестве аргумента делаем ссылку на В1. Автозаполнением распространяем формулу на четвертую строку на ячейки В4-K4. Далее в ячейке F6 задаем подпись «Экспонента» и в соседней G6 вводим функцию ЛИНЕЙН, аргументами которой будут преобразованные данные В4-K4 (в поле «Изв_знач_y»), а остальные поля такие же как и для случая линейной регрессии (B2-K2, 1, 1). Далее обводим ячейки G6-H10 и нажимаем F2 и Ctrl+Shift+Enter. Результат R3 = 0,89079, F3 = 65,25304, что говорит об очень хорошей регрессии. Для нахождения коэффициентов уравнения регрессии b = ã; ставим курсор в J6 и делаем заголовок «а=», а в соседней К6 формулу «=ЕХР(Н6)», в J7 даем заголовок «b=», а в К7 формулу «=G6». Уравнение регрессии есть y = 0,511707· e6,197909x.Экспонента | 1,824212 | -0,67 | a= | 0,511707 |
0,225827 | 0,350304 | b= | 6,197909 | |
0,89079 | 0,512793 | |||
65,25304 | 8 | |||
17,15871 | 2,103652 |
Рассмотрим степенную регрессию. Для ее линеаризации получаем уравнение ỹ = ã , где ỹ = lny,
= lnx, ã = b, = lna. Видно, что надо сделать преобразование данных – y заменить на lny и x заменить на lnx. Строчка с lny у нас уже есть. Преобразуем переменные х. В ячейку А5 даем подпись «lnx», а в В5 и вводим формулу LN (категория «Математические»). В качестве аргумента делаем ссылку на В2. Автозаполнением распространяем формулу на пятую строку на ячейки B5-K5. Далее в ячейке F12 задаем подпись «Степенная» и в соседней G12 вводим функцию ЛИНЕЙН, аргументами которой будут преобразованные данные B4-K4 (в поле «Изв_знач_у»), и B5-K5 (в поле «Изв_знач_х»), остальные поля – единицы. Далее освободим ячейки G12-H16 и нажимаем F2 и Ctrl+Shift+Enter. Результат R4 = 0,997716, F4 = 3494,117, что говорит об хорошей регрессии. Для нахождения коэффициентов уравнения регрессии b = ã; ставим курсор в J12 и делаем заголовок «а=», а в соседней К12 формулу «=ЕХР(Н12)», в J13 даем заголовок «b=», а в К13 формулу «=G12». Уравнение регрессии есть у = 4,90767/х+ 7,341268.Степенная | 1,993512 | 1,590799 | a= | 4,90767 |
0,033725 | 0,023823 | b= | 7,341268 | |
0,997716 | 0,074163 | |||
3494,117 | 8 | |||
19,21836 | 0,044002 |
Проверим, все ли уравнения адекватно описывают данные. Для этого нужно сравнить F-статистики каждого критерия с критическим значением. Для его получения вводим в А21 подпись «F-критическое», а в В21 функцию FРАСПОБР, аргументами которой вводим соответственно «0,05» (уровень значимости), «1» (число факторов Х в строке «Уровень значимости 1») и «8» (степень свободы 2 = n – 2). Результат 5,317655. F – критическое больше F – статистики значит модель адекватна. Также адекватны и остальные регрессии. Для того, чтобы определить, какая модель наилучшим образом описывает данные, сравним индексы детерминации для каждой модели R1, R2, R3, R4. Наибольшим является R4 = 0,997716. Значит опытные данные лучше описывать у = 4,90767/х+ 7,341268.
Вывод:В ходе работы я освоил методы построения основных видов нелинейных уравнений парной регрессии с помощью с помощью ЭВМ (внутренне линейные модели), научился получать и анализировать показатели качества регрессионных уравнений.
Y | 0,3 | 1,2 | 2,8 | 5,2 | 8,1 | 11 | 16,8 | 16,9 | 24,7 | 29,4 |
X | 0,25 | 0,5 | 0,75 | 1 | 1,25 | 1,5 | 1,75 | 2 | 2,25 | 2,5 |
1/x | 4 | 2 | 1,333333 | 1 | 0,8 | 0,666667 | 0,571429 | 0,5 | 0,444444 | 0,4 |
ln y | -1,20397 | 0,182322 | 1,029619 | 1,648659 | 2,0918641 | 2,397895 | 2,821379 | 2,827314 | 3,206803 | 3,380995 |
ln x | -1,38629 | -0,69315 | -0,28768 | 0 | 0,2231436 | 0,405465 | 0,559616 | 0,693147 | 0,81093 | 0,916291 |
Линейная | 12,96 | -6,18 | Экспонента | 1,824212 | -0,67 | a= | 0,511707 | |||
1,037152 | 1,60884 | 0,225827 | 0,350304 | b= | 6,197909 | |||||
0,951262 | 2,355101 | 0,89079 | 0,512793 | |||||||
156,1439 | 8 | 65,25304 | 8 | |||||||
866,052 | 44,372 | 17,15871 | 2,103652 | |||||||
Гипербола | -6,25453 | 18,96772 | Степенная | 1,993512 | 1,590799 | a= | 4,90767 | |||
2,321705 | 3,655951 | 0,033725 | 0,023823 | b= | 7,341268 | |||||
0,475661 | 7,724727 | 0,997716 | 0,074163 | |||||||
7,257293 | 8 | 3494,117 | 8 | |||||||
433,0528 | 477,3712 | 19,21836 | 0,044002 | |||||||
F - критическое | 5,317655 |
Лабораторная работа № 5