следует проводить не более чем на T0 / 3 лет вперед (т.е. промежуток экстраполяции должен иметь продолжительность не более чем T0/3 лет).
При построении ПФ научно-технический прогресс (НТП) может быть учтен с помощью введения множителя НТП еpt, где параметр (число) p(p>0) характеризует темп прироста выпуска под влиянием НТП:
Эта ПФ - простейший пример динамической ПФ; она включает нейтральный, то есть не материализованный в одном из факторов, технический прогресс. В более сложных случаях технический прогресс может воздействовать непосредственно на производительность труда или капиталоотдачу: Y(t) = f(A(t)-L(t), K(t)) или Y(t) = f(A(t) K(t), L(t)). Он называется, соответственно, трудосберегающим или капиталосберегающим НТП.
Пример .. Поиведем вариант ПФКД с учетом НТП v(t} =
Выделение существенных видов ресурсов (факторов производства) и выбор аналитической формы функции fназывается спецификацией ПФ .
Преобразование реальных и экспертных данных в модельную информацию, т.е. расчет численных значений параметров ПФ на базе статистических данных с помощью регрессионного и корреляционного анализа, называется параметризацией ПФ .
Проверка истинности (адекватности) ПФ называется ее верификацией.
Выбор аналитической формы ПФ (т.е. спецификация) диктуется прежде всего теоретическими соображениями, которые должны явно (или даже неявно) учитывать особенности взаимосвязей между конкретными ресурсами (в случае микроэкономического уровня) или экономических закономерностей (в случае макроэкономического уровня), особенности реальных или экспертных данных, преобразуемых в параметры ПФ (т.е. особенности параметризации). На спецификацию и параметризацию в процессе совершенствования ПФ оказывают влияние результаты верификации ПФ. Отметим здесь, что оценка параметров ПФ обычно проводится с помощью метода наименьших квадратов.
называется средней производительностью i-го ресурса (фактора производства) (СПФ) или средним выпуском по i-му ресурсу (фактору производства). Символика: Аi=f(x)/xi.
Напомним, что в случае двухфакторной ПФКД
для средних производительностей Y/K и Y/L основного капитала и труда были использованы соответственно термины капиталоотдача и производительность труда. Эти термины используют и применительно к любым двухфакторным ПФ, у которых х1=К иx2=L.называется предельной (маржинальной) производительностью i-го ресурса (фактора производства) (ППФ) или предельным выпуском по i-му ресурсу (фактору производства). Символика: Mi=df(x)/dxi.
Следовательно, ППФ (приближенно) показывает, на сколько единиц увеличится объем выпуска у, если объем затрат х i-го ресурса вырастает на одну (достаточно малую) единицу при неизменных объемах другого затрачиваемого ресурса.
Отношение предельной производительности Mii-го ресурса к его средней производительности Аiназывается (частной) эластичностью выпуска по i-му ресурсу (по фактору производства) (ЭВФ). Символика:
Сумма Е1 + Е2 = Еx называется эластичностью производства.
Е (приближенно) показывает, на сколько процентов увеличится выпуск у, если затраты i-го ресурса 1 увеличатся на один процент при неизменных объемах другого ресурса.
Обратим внимание на то, что i - номер заменяемого ресурса, j -номер замещающего ресурса. Используется также термин: предельная технологическая норма замены (замещения) i-ого ресурса (фактора производства) j-м ресурсом (фактором производства). Приведем более краткий (но менее точный) термин: (предельная) норма замены (замещения) ресурсов.
т.е. (предельная) норма замены первого ресурса вторым равна отношению эластичностей выпуска по первому и второму ресурсам, умноженному на отношение объема второго ресурса к объему первого ресурса. Если х1 = К, х2= L, то отношение x1/x2=K/L называется капиталовооруженностью труда. В этом случае (предельная) норма замены основного капитала трудом равна отношению эластичностей выпуска по основному капиталу и труду, поделенному на капиталовооруженность труда.
Пусть ПФ - двухфакторная. При постоянном выпуске у и малых приращениях Дх1, и Дх2, имеем приближенное равенство
Предельная норма замены ресурсов R12 (приближенно) показывает, на сколько единиц увеличатся затраты второго ресурса (при неизменном выпуске у = а), если затраты первого ресурса уменьшатся на одну (малую) единицу.
Имеются статистические данные по производственному объединению “Угледобыча":
Условное время t | Средн. годовая списочн. численность Х1, тыс .чел | Балансовая стоим. основных фондов Х2, млн.грн. | Валовая продукция Y, млн.грн | |
1 | 3,6 | 100 | 416 | |
2 | 4,1 | 105 | 464 | |
3 | 3,8 | 90 | 400 | |
4 | 3,2 | 110 | 432 | |
5 | 3,5 | 125 | 480 |
Балансовая стоимость основных фондов и валовая продукция производственного объединения даны с учетом пересчета по индексу цен.
Вычислить производственную функцию Кобба-Дугласа; определить коэффициенты эластичности валовой продукции по списочной численности и стоимости основных фондов, а также предельные производительности по этим факторам. По результатам расчетов сформулировать выводы.
Решение:
Производственная функция Кобба-Дугласа имеет следующий вид
где b0 , b1 , b2 – параметры уравнения.
Для оценки параметров прологарифмируем уравнение и выполним замену переменных:
ln y =ln b0 + b1 ln x1 + b2 ln x2
b’0= ln b0 , y’= ln y, x’1= ln x1, x’2= ln x2.
В результате этих преобразований получим линейную модель
y’= b’0+ b1x’1+ b2x’2.
Для определения значений коэффициентов этой модели прологарифмируем исходные значения у и х1, х2, а затем используем метод наименьших квадратов.
В результате вычислений с помощью функции ЛИНЕЙН пакетаEXCEL получим
b1 = 0,424, b2 = 0,680,
ln b0 = 2,369откуда b0= 10,690.
Следовательно, производственная функция Кобба-Дугласа имеет следующий вид
Y=10,690X10,424X20,68.
Коэффициент эластичности валовой продукции по списочной численности (по х1) равен b1 = 0,424.
Коэффициент эластичности валовой продукции по стоимости основных фондов (по х2) равен b2 = 0,680.
Следовательно, можно сделать вывод, что при увеличении списочной численности на 1% объём валовой продукции увеличится на 0,424% , а при увеличении стоимости основных фондов на 1% объём валовой продукции увеличится на 0,68%.
Предельная производительность по списочной численности равна
M1 = b1* Y / X1 = 0,424* Y / X1= 0,424* 10,690X1 –0,576 X20,68 ,
где Y / X1- производительность труда.
Предельная производительность по стоимости основных фондов равна
M2 = b2* Y / X2 = 0,680* Y / X2 =0,680* 10,690X10,424X2 –0,32 ,
где Y / X2 -фондоотдача.
Важным случаем в теории игр является ситуация, когда выигрыш одного из игроков равен проигрышу другого, т.е. налицо прямой конфликт между игроками. Классическими примерами здесь являются ситуации, где, с одной стороны, имеется один покупатель, с другой - продавец (ситуация монополия-монопсония). Подобные игры называются играми с нулевой суммой, или антагонистическими играми.
В зависимости от возможности предварительных переговоров между игроками различают кооперативные и некооперативные игры.
Игра, в которой игроки не могут координировать свои стратегии подобным образом, называется некооперативной. Очевидно, что все антагонистические игры могут служить примером некооперативных игр.
Кооперативной игрой называется игра с ненулевой суммой, в которой игрокам разрешается обсуждать перед игрой свои стратегии и договариваться о совместных действиях, т.е. игроки могут образовывать коалиции. Основная задача в кооперативной игре состоит в дележе общего выигрыша между членами коалиции. Примером кооперативной игры может служить ситуация образования коалиций в парламенте для принятия путем голосования решения, так или иначе затрагивающего интересы участников голосования.