Смекни!
smekni.com

Математические модели в менеджменте и маркетинге (стр. 7 из 8)

Теперь полученные значения тренда можно использовать для нахождения оценок сезонной компоненты. Мы рассчитываем:

А - Т = S + Е.

К сожалению, оценки значений тренда, полученные в результате расчета скользящих средних по четырем точкам, относятся к несколько иным моментам времени, чем фактические данные. Первая оценка, равная 229,75, представляет собой точку, совпадающую с серединой 19X6 г., т.е. лежит в центре промежутка фактических значений объемов продаж во II и III кварталах. Вторая оценка, равная 251, лежит между фактическими значениями в III и IV кварталах. Нам же требуются десезонализированные средние значения, соответствующие тем же интервалам времени, что и фактические значения за квартал. Положение десезонализированных средних во времени сдвигается путем дальнейшего расчета среднего для каждой пары значений. Найдем среднюю из первой и второй оценок, центририруем их на июль-сентябрь 19X6 г., т. е. (229,75 + 250)/2 = 240,4.

Это и есть десезонализированная средняя за июль-сентябрь 19X6 г. Эту десезонализированную величину, которая называется центрированной скользящей средней, можно непосредственно сравнивать с фактическим значением за июль-сентябрь 19X6 г., равным 182. Отметим, что это означает отсутствие оценок тренда за первые два или последние два квартала временного ряда. Результаты этих расчетов приведены в табл. 9.2.

Для каждого квартала мы имеем оценки сезонной компоненты, которые включают в себя ошибку или остаток. Прежде чем мы сможем использовать сезонную компоненту, нужно пройти два следующих этапа. Найдем средние значения сезонных оценок для каждого сезона года. Эта процедура позволит уменьшить некоторые значения ошибок. Наконец, скорректируем средние значения, увеличивая или уменьшая их на одно и то же число таким образом, чтобы общая их сумма была равна нулю. Это необходимо, чтобы усреднить значения сезонной компоненты в целом за год. Корректирующий фактор рассчитывается следующим образом: сумма оценок сезонных компонент делится на 4. В последнем столбце табл. 9.2 эти оценки записаны под соответствующими квартальными значениями. Сама процедура приведена в табл. 9.3. производилось округление двух значений сезонной компоненты до ближайшего большего числа, а двух значений — до ближайшего меньшего числа таким образом, чтобы общая сумма была равна нулю.

Значения сезонной компоненты еще раз подтверждают наши выводы, сделанные на основе диаграммы. Объемы продаж за два зимних квартала превышают среднее трендовое значение приблизительно на 40 тыс. шт., а объём продаж за два летних периода ниже средних на 21 и 62 тыс. шт. соответственно

Аналогичная процедура применима при определении сезонной вариации за любой промежуток времени. Если, например, в качестве сезонов выступают дни недели, для элиминирования влияния ежедневной «сезонной компоненты» также рассчитывают скользящую среднюю, но уже не по четырем, а по семи точкам. Этаскользящая средняя представляет собой значение тренда в середине недели, т.е в четверг; таким образом, необходимость в процедуре центрирования отпадает.

Десезонализация данных при расчете тренда

Шаг 2 - состоит в десезонализации исходных данных. Она заключается в вычитании соответствующих значений сезонной компоненты из фактических значений данных за каждый квартал, т.е. А — S = Т + Е, что показано ниже.

Новые оценки значений тренда, которые еще содержат ошибку, можно использовать для построения модели основного тренда. Если нанести эти значения на исходную диаграмму, можно сделать вывод о существовании явного линейного тренда.


Уравнение линии тренда имеет вид:

Т = а + b *номер квартала,

где а и bхарактеризуют точку пересечения с осью ординат и наклон линии тренда. Для определения параметров прямой, наилучшим образом аппроксимирующей тренд, можно использовать метод наименьших квадратов. Таким образом, как мы знаем из предыдущей главы о линейной регрессии, уравнения для расчета параметров а и bбудут иметь вид:

где х — порядковый номер квартала, у — значение (Т + Е) в предыдущей таблице. С помощью калькулятора подсчитаем:

Подставив найденные значения в соответствующие формулы, получим:

b = 19,978,а = 180,046.

Следовательно, уравнение модели тренда имеет следующий вид:

Трендовое значение объема продаж, тыс. шт. = 180,0 + 20,0 * номер квартала.

Расчет ошибок

Шаг 3 нашего алгоритма, предшествующий составлению прогнозов, состоит врасчете ошибок или остатка. Наша модель имеет следующий вид:


A = T + S + E.

Значение Sбыло найдено в разделе 9.3.1, а значение Т — в разделе 9.3.2. Вычитая каждое это значение из фактических объемов продаж, получим значение ошибок.

Последний столбец этой таблицы можно использовать в шаге 4 при расчете среднего абсолютного отклонения (MAD) или средней квадратической ошибки (MSE):

В нашем случае ошибки достаточно малы и составляют от 1 до 2%. Тенденция, выявленная по фактическим данным, достаточно устойчива и позволяет получить хорошие краткосрочные прогнозы.

Прогнозирование по аддитивной модели

Прогнозные значения по модели с аддитивной компонентой рассчитываются как

F = Т + S (тыс. шт. за квартал),

где трендовое значение Т = 180 + 20 х номер квартала, а сезонная компонента S составляет +42,6 в январе-марте, - 20,7 в апреле-июне, 62,0 в июле-сентябре и +40,1 в октябре-декабре.

Порядковый номер квартала, охватывающего ближайшие три месяца с апреля по июль 19X9 г., равен 14, таким образом, прогнозное трендовое значение составит: Т14 = 180 + 20 х 14 = 460 (тыс. шт. за квартал) .

Соответствующая сезонная компонента равна - 20,7 тыс. шт. Следовательно, прогноз на этот квартал определяется как:

F (апрель-июнь 19X9 г.) = 460 - 20,7 = 439,3 тыс. шт.

Не следует забывать: чем более отдаленным является период упреждения, тем меньшей оказывается обоснованность прогноза. В данном случае мы предполагаем, что тенденция, обнаруженная по ретроспективным данным, распространяется и на будущий период. Для сравнительно небольших периодов упреждения такая предпосылка может действительно иметь место, однако ее выполнение становится менее вероятным по мере составления прогнозов на более отдаленную перспективу.

АНАЛИЗ МОДЕЛИ С МУЛЬТИПЛИКАТИВНОЙ КОМПОНЕНТОЙ: А = Т х SxE

В некоторых временных рядах значение сезонной компоненты не является константой, а представляет собой определенную долю трендового значения. Таким образом, значения сезонной компоненты увеличиваются с возрастанием значений тренда.

Пример 9.3. Компания CDpic осуществляет реализацию нескольких видов продукции. Объемы продаж одного из продуктов за последние 13 кварталов представлены в таблице 9.6.

Построим по этим данным точечную диаграмму:

Объем продаж этого продукта так же, как и в предыдущем примере, подвержен сезонным колебаниям, и значения его в зимний период выше, чем в летний. Однако размах вариации фактических значений относительно линии тренда постоянно возрастает. К таким данным следует применять модель с мультипликативной компонентой:

Фактическое значение = Трендовое значение * Сезонная вариация * Ошибка, т. е.

А = Т х S х Е.


В нашем примере есть все основания предположить существование линейного тренда, но чтобы полностью в этом убедиться, проведем процедуру сглаживания временного ряда.

Расчет значений сезонной компоненты

В сущности, эта процедура ничем не отличается от той, которая применялась для аддитивной модели. Так же вычисляются центрированные скользящие средние для трендовых значений, однако оценки сезонной компоненты представляют собой коэффициенты, полученные по формуле А/Т = S х Е, Результаты расчетов, приведены в табл. 9.7.

Значения сезонных коэффициентов получены на основе квартальных оценок по аналогии с алгоритмом, который применялся для аддитивной модели. Так как значения сезонной компоненты — это доли, а число сезонов равно четырем, необходимо, чтобы их сумма была равна четырем, а не нулю, как в предыдущем случае. (Если бы в исходных данных предполагалось семь сезонов в течение недели по одному дню каждый, то общая сумма значений сезонной компоненты должна была бы равняться семи). Если эта сумма не равна четырем, производится корректировка значений сезонной компоненты точно таким же образом, как это уже делалось ранее. В таблице оценки, рассчитанные в последнем столбце предшествующей табл. 9.8, расположены под соответствующим номером квартала.

Как показывают оценки, в результате сезонных воздействий объемы продаж в январе—марте увеличиваются на 11,6% соответствующего значения тренда (1,116). Аналогично сезонные воздействия в октябре-декабре приводят к увеличению объема продаж на 5,5% от соответствующего значения тренда. В двух других кварталах сезонные воздействия состоят в снижении объемов продаж, которое составляет 90,7 и 92,2% от соответствующих трендовых значений.

Десезонализация данных и расчет уравнения тренда

После того как оценки сезонной компоненты определены, можем приступить к процедуре десезонализации данных по формуле A /S = Т х Е. Результаты расчетов этих оценок значений тренда приведены в табл. 9.9.

Полученные трендовые значения наносятся на исходную точечную диаграмму.

Точки, образующие представленный на графике тренд, достаточно сильно разбросаны. Объемы продаж в данном случае не образуют такой строгой последовательности, как в предыдущем примере с компанией Lewplanpic. Скорее всего, пример с CDpic более близок к реальной действительности.