Смекни!
smekni.com

Математические модели формирования и использования запасов (стр. 3 из 3)

qi*= Vi ·τц*

τпрi*= qi*/li

τi1*= τпрi*/ Bi

τi4*= τпрi*- τi1*

τi2*= τц*· Аi / Bi (4-31)

Hi* = τi1*+ τi2*

Ni* = Hi*+ Mi

Yi* = qi·(1+ Vi)/li

Подставив числовые данные, получим (табл.1.3.):

Таблица 1.3

Оптимальные параметры системы управления запасами

I qi* τпрi* τi1* τi4* τi2* Hi* Ni* Yi*
1 11,61 0,05 0,07 0,02 0,28 0,35 0,68 2,37
2 42,19 0,06 0,08 0,02 0,23 0,31 0,56 11,02
3 63,04 0,04 0,08 0,04 0,39 0,47 0,97 11,07

Выполним проверку ограничений:

· по складским помещениям

τF=F/∑i fi· Vi, τF= 0,35 ед. врем.

· по оборотным средствам

τA= А0/∑iai · Vi, τA= 0,53 ед. врем.

Поскольку τц* < τF< τA, то пересчет полученных оптимальных параметров (табл. 4.3.) не требуется.

Заключение

Системы управления материальными запасами играют важную роль в экономической системе, так как они обеспечивают надежность функционирования экономических объектов – предприятий, отраслей, транспорта.

В данном разделе рассмотрены математические модели управления запасами в условиях детерминированного спроса, которые применяются для управления поставками ресурсов и очередностью запуска деталей (полуфабрикатов) в производство с учетом переналадок на одном и том же технологическом оборудовании.

В качестве примера были рассчитаны оптимальные партии поставки для многопродуктовой модели при заданных исходных условиях.

В результате вычислений получены следующие параметры системы управления запасами:

1) партии поставки полуфабрикатов qi*;

2) максимальный уровень запасов полуфабрикатов Yi*;

3) времени производства полуфабрикатов τпрi*;

4) времени формирования запасов τi1*;

5) времени ликвидации дефицита τi4*;

6) времени расходования запаса τi2*;

7) времени бездефицитной работы Hi*;

8) времени работы при наличие дефицита Ni* для каждого вида полуфабрикатов.

Кроме того, установлены точные соответствия между продолжительностью цикла поставок τц* и основными характеристиками системы управления запасами.