Смекни!
smekni.com

Двоїста задача лінійного програмування: економічна інтерпретація знаходження оптимальних планів (стр. 3 из 6)

Розв’язання. Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до стандартного вигляду. Оскільки цільова функція F максимізується і в системі обмежень є нерівності, то вони мусять мати знак «

». Тому перше обмеження задачі помножимо на (–1). Після цього знак нерівності зміниться на протилежний. Отримаємо:

max F = –5x1 + 2x2;

Тепер за відповідними правилами складемо двоїсту задачу:

;

Або схематично (використовуючи компоненти векторів та матриць) зв’язок між парою цих задач можна зобразити так:

До заданої задачі лінійного програмування записати двоїсту.

Розв’язання. Пряму задачу зведемо до стандартного вигляду. Оскільки цільова функція F мінімізується і в системі обмежень є нерівності, то вони мають бути виду «

». Тому друге обмеження задачі необхідно помножити на (–1). При цьому знак нерівності зміниться на протилежний. Отримаємо:

Двоїста задача:

Оскільки перше обмеження початкової задачі є рівнянням, то відповідна йому змінна двоїстої задачі

може набувати як додатного, так і від’ємного значення.

3. Основні теореми двоїстості та їх економічний зміст

Зв’язок між оптимальними розв’язками прямої та двоїстої задач встановлюють леми та теореми двоїстості. Розглянемо задачі (3.1) – (3.3) та (3.4) – (3.6) з економічною інтерпретацією.

Якщо

та
– допустимі розв’язки відповідно прямої та двоїстої задач, то виконується нерівність

або
. (3.7)

Доведення. Помножимо кожне рівняння системи (3.2) на відповідну змінну двоїстої задачі:

Підсумувавши праві і ліві частини нерівностей, отримаємо:

. (3.8)

Аналогічно перетворимо систему обмежень (3.5) двоїстої задачі:


Підсумувавши після множення тут також ліві та праві частини, отримаємо нерівність:

(3.9)

Ліві частини нерівностей (3.8) та (3.9) збігаються, отже:

.

Нерівність (3.7) доведено.

Якщо

та
– допустимі розв’язки відповідно прямої та двоїстої задач, для яких виконується рівність

(3.10)

то X*, Y* – оптимальні розв’язки відповідних задач.

Доведення. Нехай

– допустимий план прямої задачі (3.1) – (3.3). Тоді на підставі нерівності (3.7) маємо:
. За умовою задачі
, отже

(3.11)

Оскільки за допущенням

– довільний допустимий план прямої задачі, то нерівність (3.11) виконується для будь-якого з можливих розв’язків. Отже, маємо, що при
цільова функція (3.1) набирає найбільшого значення, тобто є оптимальним розв’язком початкової задачі.

В аналогічний спосіб доводиться, що

– оптимальний план двоїстої задачі.

3.1 Перша теорема двоїстості

Теорема (перша теорема двоїстості). Якщо одна з пари спряжених задач має оптимальний план, то й друга задача також має розв’язок, причому для оптимальних розв’язків значення цільових функцій обох задач збігаються, тобто

.

Якщо цільова функція однієї із задач необмежена, то спряжена задача також не має розв’язку.

Доведення. Допустимо, що початкова задача (3.1) – (3.3) має оптимальний план, який отриманий симплексним методом. Не порушуючи загальності, можна вважати, що останній базис складається з першихm векторів

. Остання симплексна таблиця має вигляд:

Таблиця 3.1

і Базис Сб План с1 с2 сm cm + 1 cn
x1 x2 xm xm + 1 xn
1 x1
1 0 0
2 x2
0 1 0
m xm
0 0 1
m + 1
F0 0 0 0

Позначимо через D матрицю, що утворена з компонент векторів А1, А2,…, Аm останнього базису в першій симплексній таблиці.

Для оптимального плану отримаємо:

(3.12)

де

, В-вектор, що складається з вільних членів системи обмежень.

Звідси:

(3.13)

Симплексна таблиця 3.1 містить коефіцієнти розкладу векторів

початкової системи обмежень задачі за векторами базису, тобто кожному вектору з системи обмежень задачі (3.1) – (3.3) Аj відповідає в симплексній таблиці вектор
, такий що

(3.14)

Позначимо через

матрицю, що складається з коефіцієнтів розкладу векторів
. Тоді буде справджуватися рівність:

, звідки

. (3.15)

Враховуючи (3.13), значення оптимального плану даної задачі знаходиться у вигляді: