5 | 2 | 3 | 1 | 6 | 4 | 8 | 9 | 5 | 7 |
4 | 7 | 8 | 2 | 9 | 10 | 4 | 5 | 3 | 2 |
9 | 7 | 8 | 6 | 5 | 4 | 3 | 5 | 2 | 1 |
2 | 3 | 4 | 1 | 5 | 6 | 7 | 5 | 3 | 10 |
1. Вычислить критерий хи-квадрат и сделать вывод о нормальности данного распределения.
2. Построить график эмпирического распределения.
Критерий Пирсона
1. Наблюдаемый критерий Пирсона вычисляется по следующей формуле:
критерий пирсон колмогоров распределение частота
,где
- наблюдаемая частота; - теоретическая частота.Массив данных о значениях случайной величины X, как элементов выборки представим в таблице 1.1 в ячейках В2:К5.
Таблица
A | B | C | D | E | F | G | H | I | J | K |
1 | ||||||||||
2 | 5 | 2 | 3 | 1 | 6 | 4 | 8 | 9 | 5 | 7 |
3 | 4 | 7 | 8 | 2 | 9 | 10 | 4 | 5 | 3 | 2 |
4 | 9 | 7 | 8 | 6 | 5 | 4 | 3 | 5 | 2 | 1 |
5 | 2 | 3 | 4 | 1 | 5 | 6 | 7 | 5 | 3 | 10 |
6 | ||||||||||
7 | n= | 40 | k= | 6,31884 | ||||||
8 | 10 | h= | 1,42431 | |||||||
9 | 1 |
2. Разобьем исходные данные по интервалам. Количество интервалов вычислим по формуле
, где n – объем выборки.Объем выборки определим с помощью функции СЧЕТ . Для этого установим курсор в ячейку В7, щелкнем мышкой над кнопкой
, которая находится на панели инструментов. Появится окно «Мастер функций – шаг 1 из 2», в котором в категории «Статистические» выбираем функцию СЧЕТ. Затем мышкой выполним команду ОК. В появившемся окне «Аргументы функции» поставим курсор в строку ввода «Значение 1» и мышкой выделим массив В2:К5, щелкнем мышкой ОК. В ячейке В7 появится значение объема данных, число 40.Введем в ячейку Е7 формулу: =1+3,32*Log(В7),в ячейке Е7 появится число 6,31884.
Далее вычислим шаг интервалов, используя формулу
, где - максимальное значение варианты из массива данных; – минимальное значение варианты; k – количество интервалов.Выделим пустую ячейку В8 и вызовем окно «Мастер функций – шаг 1 из 2», в котором инициируем функцию «МАКС», введем в строку ввода блок ячеек В2:К5. В ячейке В8 появится максимальное значение данных, число 10.Выделим пустую ячейку В9 и вызовем окно «Мастер функций – шаг 1 из 2», в котором инициируем функцию «МИН», введем в строку ввода блок ячеек В2:К5. В ячейке В9 появится максимальное значение данных, число 1.
Теперь введем в ячейку Е8 формулу: =(В8-В9)/Е7. Получим значение шага h=1,42431. Округлим его, получаем h=1,5.
Таким образом, имеем шаг h=1,5, количество интервалов округлим до 7, k=7. Вычислим теоретические частоты по интервалам
. Для этого построим новую расчетную таблицу 1.2. Значения частот определяем с использованием функции ЧАСТОТА( ).Введем в ячейку В11 заголовок для левого конца интервала
, в ячейку С11 – заголовок правого конца интервала . Далее вводим значения в столбцы В12:В18 и С12:С18.Таблица
A | B | C | D | E | F | G | H | I |
10 | ||||||||
11 | ||||||||
12 | 1 | 2,5 | 3 | 1,75 | 5,25 | 59,7417 | -1,4232 | |
13 | 2,5 | 4 | 5 | 3,25 | 16,25 | 43,882 | -1,4232 | -0,8482 |
14 | 4 | 5,5 | 10 | 4,75 | 47,5 | 21,3891 | -0,8482 | -0,2731 |
15 | 5,5 | 7 | 7 | 6,25 | 43,75 | 0,00984 | -0,2731 | 0,30188 |
16 | 7 | 8,5 | 7 | 7,75 | 54,25 | 16,5473 | 0,30188 | 0,8769 |
17 | 8,5 | 10 | 3 | 9,25 | 27,75 | 27,6792 | 0,8769 | 1,45192 |
18 | 10 | 11,5 | 5 | 10,75 | 53,75 | 102,945 | 1,45192 | |
19 | сумма | 40 | 248,5 | 272,194 | ||||
20 | = | 6,2125 | 6,80484 | |||||
21 | 2,60861 |
3. 1) Выделим мышкой пустой столбец D12:D18. Щелкнем мышкой над кнопкой
функцию ЧАСТОТА. Появится окно «Аргументы и функции». Вводим в строку массив данных блок В2:К5. Затем переводим курсор в строку массив интервалов. Т.е. выделяем столбец В12:В18 инажимаем последовательно на клавиатуре три кнопки Ctrl+Shift+Enter.2) Столбец Е12:Е18 заполним средними значениями каждого интервала. В столбцеF12:F18 вычислим средние значения для всего массива данных . Для этого в ячейкуF12 вводим формулу =D12*E12 и протягиваем мышкой значение этой ячейки до конца таблицы. В ячейке F19 вычисляем сумму, а в ячейке F20 –среднее значение по формуле =F19/D19.
=6,21253) Вычисляем среднее квадратическое отклонение по формуле
.Вводим с клавиатуры в ячейку G12 формулу =(E12-59,875)^2*D12 и протягиваем ячейку до ячейки G18. Далее вычисляем в G19 сумму, в ячейке G20 – среднее значение, разделив сумму на 40 и в ячейке G21 извлекаем корень квадратный по формуле =корень(G20).
2,60861.4. Вычислим безразмерные аргументы
для левых концов интервала и для правых концов интервала по формуле .В ячейку H12 вводим формулу =(В12-6,2125)/ 2,60861 и протягиваем ее до конца столбца, т.е. заполняем нижние значения соответствующими вычислениями. Аналогично вычисляем величины
формулой: =(C12-6,2125)/ 2,60861.Далее вычисляем значения функций Лапласа F(
и F( потаблице и результаты помещаем в новую расчетную таблицу 1.3 в ячейки В24:В30 и С24:С30.Таблица 1.3
A | B | C | D | E | F |
22 | |||||
23 | F( | F( | |||
24 | -0,5 | -0,4222 | 1,75 | 3,112 | 0,00403 |
25 | -0,4222 | -0,2968 | 3,25 | 5,016 | 5,1E-05 |
26 | -0,2968 | -0,1064 | 4,75 | 7,616 | 0,74625 |
27 | -0,1064 | 0,1179 | 6,25 | 8,972 | 0,43344 |
28 | 0,1179 | 0,315 | 7,75 | 7,884 | 0,09912 |
29 | 0,315 | 0,4265 | 9,25 | 4,46 | 0,47794 |
30 | 0,4265 | 0,5 | 10,75 | 2,94 | 1,4434 |
31 | сумма | 40 | 3,20423 |
Вычисляем теоретические частоты по формуле
F( F( . Вводим в ячейку E24 формулу =(С24-В24)*60 и протягиваем формулу до конца столбца.