Смекни!
smekni.com

Методика економіко-математичного програмування (стр. 2 из 3)

Ціни, додатковим клітинкам, щоб фіктивний стовбець був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.

Занесемо вихідні дані у таблицю.


В1 В2 В3 В4 В5 В6 Запаси
А1 1 4 7 9 1 0 250
А2 2 3 1 2 4 0 300
А3 2 1 3 1 4 0 150
Потреби 110 80 100 90 70 250

Забезпечивши закритість розв'язуваної задачі, розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

Загальні витрати, пов’язані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:


minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.

Загалом математична модель сформульованої задачі має вигляд:

minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.

за умов:

Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».

Ai Bj ui
b1 = 110 b2 = 80 b3 = 100 b4=90 b5=70 b6=250
а1 = 250 1110 480 7[-]60 9 1[+] 0 u1 = 0
а2 = 300 2 3 1[+]40 290 4[-]70 0100 u2 = -6
а3 = 150 2 1 3 1 4 0150 u3 = -6
vj v1 =1 v2 =4 v3 =7 v4 =8 v5 =10 v6 =6

В результаті отримано перший опорний план, який є допустимим, оскільки всі вантажі з баз вивезені, потреба магазинів задоволена, а план відповідає системі обмежень транспортної задачі.

Підрахуємо число зайнятих клітин таблиці, їх 8, а має бути m+n-1=8. Отже, опорний план є не виродженим.

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0:

u1=0, u2=-6, u3=-6, v1=1, v2=4, v3=7 v4=8, v5=10, v6=6. Ці значення потенціалів першого опорного плану записуємо у транспортну таблицю.

Потім згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vjcij(для порожніх клітинок таблиці).

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(1;5): 0 + 10 > 1

(1;6): 0 + 6 > 0

(3;4): -6 + 8 > 1

Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Вибираємо максимальну оцінку вільної клітини (А1B5): 1. Для цього в перспективну клітку (1;5) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

Тепер необхідно перемістити продукцію в межах побудованого циклу. З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (1;3) = 60. Додаємо 60 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 60 з хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Для цього у порожню клітинку А1B5 переносимо менше з чисел хij, які розміщені в клітинках зі знаком «–». Одночасно це саме число хij додаємо до відповідних чисел, що розміщені в клітинках зі знаком «+», та віднімаємо від чисел, що розміщені в клітинках, позначених знаком «–».

Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписуємо у другу таблицю без змін. Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості плану, тобто дорівнювати (n + m – 1).

Отже, другий опорний план транспортної задачі матиме такий вигляд:

Ai Bj ui
b1 = 110 b2 = 80 b3 = 100 b4=90 b5=70 b6=250
а1 = 250 1110 4[-]80 7 9 1[+]60 0 u1 = 0
а2 = 300 2 3 1100 290 4[-]10 0[+]100 u2 = 3
а3 = 150 2 1[+] 3 1 4 0[-]150 u3 = 3
vj v1 =1 v2 =4 v3 =-2 v4 =-1 v5 =1 v6 =-3

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(2;1): 3 + 1 > 2

(2;2): 3 + 4 > 3

(3;1): 3 + 1 > 2

(3;2): 3 + 4 > 1

(3;4): 3 + -1 > 1

Вибираємо максимальну оцінку вільної клітини (А3B2): 1

Для цього в перспективну клітку (А3B2) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А2B5) = 10. Додаємо 10 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 10 з Хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 110 b2 = 80 b3 = 100 b4=90 b5=70 b6=250
а1 = 250 1110 4[-]70 7 9 170 0[+] u1 = 0
а2 = 300 2 3 1100 290 4 0110 u2 = -3
а3 = 150 2 1[+]10 3 1 4 0[-]140 u3 = -3
vj v1 =1 v2 =4 v3 =4 v4 =5 v5 =1 v6 =3

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(1;6): 0 + 3 > 0

(3;4): -3 + 5 > 1

Вибираємо максимальну оцінку вільної клітини (А1B6): 0

Для цього в перспективну клітку (А1B6) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А1B2)=70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 110 b2 = 80 b3 = 100 b4=90 b5=70 b6=250
а1 = 250 1110 4 7 9 170 070 u1 = 0
а2 = 300 2 3 1100 2[-]90 4 0[+]110 u2 = 0
а3 = 150 2 180 3 1[+] 4 0[-]70 u3 = 0
vj v1 =1 v2 =1 v3 =1 v4 =2 v5 =1 v6 =0

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(3;4): 0 + 2 > 1

Вибираємо максимальну оцінку вільної клітини (А3B4): 1

Для цього в перспективну клітку (А3B4) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А3B6) =70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 110 b2 = 80 b3 = 100 b4=90 b5=70 b6=250
а1 = 250 1110 4 7 9 170 070 u1 = 0
а2 = 300 2 3 1100 220 4 0180 u2 = 0
а3 = 150 2 180 3 170 4 0 u3 = -1
vj v1 =1 v2 =2 v3 =1 v4 =2 v5 =1 v6 =0

Перевіримо оптимальність опорного плану, тобто повторюємо описані раніше дії.

Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

математичний модель симплекс екстремум

Перевірка останнього плану на оптимальність за допомогою методу потенціалів показує, що він оптимальний.

Розрахуємо значення цільової функції відповідно до другого опорного плану задачі:

F(x) = 1*110 + 1*70 + 0*70 + 1*100 + 2*20 + 0*180 + 1*80 + 1*70 = 470

За оптимальним планом перевезень загальна вартість перевезень всієї продукції є найменшою і становить 470 грн.

Завдання 4

Знайти графічним методом екстремуми функцій в області, визначеній нерівностями.