4) при построении уравнения регрессии важно соблюдать 4 предпосылку, т.е. отсутствие автокорреляции остатков. Автокорреляция остатков означает, наличие корреляции между остатками текущих и предыдущих наблюдений. В этом случае определяется коэффициент корреляции между Ei и E(i+1) как обычный коэффициент корреляции. Если этот коэффициент оказывается отличным от нуля, то остатки автокоррелированы. Выполнение этой предпосылки особенно актуально при построении регрессионных моделей по рядам динамики, где последующие уровни зависят от предыдущих (касается временных рядов).
19. оценка надежности результата множественной регрессии и корреляции
значимость уравнения множественной регрессии в целом как и в парной оценивается с помощью F критерия Фишера
где R2 коэффициент множественной детерминации как квадрат индекса множественной корреляции, n- число наблюдений, m – число параметров при переменной Х. кроме оценивания уравнения во множественной регрессии оценивается также значимость фактора дополнительно включенную в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, включенный в уравнение множественной регрессии, будет существенной увеличивать долю объясненной регрессии. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности введения его в модель. Мерой для оценки включенного фактора в модель служит частный F критерий Fxi. В общем виде для фактора Хi частный критерий определяется по формуле:
20. фиктивные переменные во множественной регрессии
при построении уравнения множественной регрессии может оказаться необходимым включение в модель фактора, имеющего 2 и более качественного уровня. Например, это атрибутивные признаки – пол, профессия, образование, климатические условия и т.д. чтобы ввести такие переменные в регрессионную модель им присваиваются цифровые метки, т.е. качественные переменные преобразуются в количественные. Такого вида структурированные переменные называются фиктивные.
Пример, по группе Х м и ж пола изучается линейная зависимость потребления кофе от цены, у- потребление кофе, х – цена.
Y=a+bx; y1=a1+b1x+E1-Mужчины,
y2=a2+b2x+E2-женщины.
Из этих 2 уравнений нужно получить 1 уравнение.
Y=a1z1+a2z2+bx+E Z1=
Z2=В отдельном случае, может оказаться необходимость введения 2 и более фиктивных переменных, тогда модель представляет собой сумму
y=a1z1+a2z2+a2s3+a4s4+bx+E
Фиктивные переменные для оценки сезонных различий потреблений. Фиктивные переменные могут вводиться не только в линейные, но и не в линейные модели, но приводимые к линейным с помощью некоторых преобразований.
21. основные элементы временных рядов
Построить эконометрическую модель можно, используя 2 типа данных:
1. данные, характеризуют совокупность объектов в определенный момент или период времени.
2. данные, характеризующие один объект за несколько последовательных моментов или периодов времени.
Модели, построенные по данным первого типа, называются пространственными моделями.
модели, построенные по данным 2 типа, называются моделями временных рядов.
Временной ряд- совокупность значений какого-либо показателя за несколько моментов или периодов времени.
Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно разделить на 3 группы:
1. факторы, формирующие тенденцию ряда.
2. фактора, формирующие циклические колебания ряда.
3. случайные факторы.
При различных состояниях изучаемого явления этих факторов зависимость уровня ряда от времени может быть различие. Во-первых, большинство временных рядов экономических показателей имеет тенденцию, характеризующую совокупное долговременное воздействие множества факторов на исследуемый показатель. Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, т.к. экономическая деятельность ряда отраслей экономики зависит от времени года. Некоторое временные ряды не содержат тенденции и циклические компоненты. А их каждый следующий уровень образуется как сумма следующего уровня ряда и некоторого положительной или отрицательной компоненты. В большинстве случаев фактический уровень временного ряда может представлять собой сумму или произведение трендовой, циклической и случайной компонент.
Модель, в которой временной ряд представлен как сумма перечисленных компонент называется аддитивной. Модель, в которой временной ряд представляет собой произведение 3 компонент называется мультипликативной.
Основные компоненты временного ряда.
Тенденция циклическая случайная
Основная задача эконометрического исследования временных рядов- выявление и предание количественного выражения каждой из перечисленных компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда.
22. автокорреляция уровней временного ряда и выявление его структуры
При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависит от предыдущего. Корреляционная зависимость между последовательными уровнями временного ряда называют автокорреляцией временного ряда. Количественно она измеряется с помощью линейного коэффициента корреляции между уровнем исходного ряда и уровнями этого же ряда, сдвинутого на несколько шагов во времени. Число периодов, по которым рассчитываются коэффициенты автокорреляции называются лагом. С его увеличением число пар значений по которым рассчитывается коэффициент автокорреляции уменьшается. Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной формулой временного ряда графику зависимости ее значений от величины ряда называется коррелограммой. Если наиболее большим оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит только тенденцию. Если наиболее большим оказался коэффициент корреляции порядка тетта, то ряд содержит циклические колебания с периодичностью тетта-моментов времени. Если ни один из коэффициентов автокорреляции не оказался значимым, то можно сделать одно из 2 предположений относительно структуры исследуемого ряда:
-либо он не содержит тенденции и циклических колебаний и имеет структуру, похожую на структуру ряда из рисунка 3 в параграфе 4.1.
- било ряд содержит сильную тенденцию для появления которой нужно провести дополнительный анализ.
23. моделирование тенденции временного ряда
Одни из наиболее распространенных способов моделирования тенденции временного ряда – построение аналитической функции, характеризующей зависимость уровня ряда от времени и тренда. Этот способ называется аналитическим выравниванием временного ряда. Для построения тренда чаще всего используются сл. Функции:
параметры каждого из перечисленных трендов можно определить МНК, используя в качеств независимой переменной время t=1…n, а в качестве зависимой переменной фактические уровни временного ряда. Для нелинейных трендов проводят стандартную процедуру линеаризации. К числу наиболее распространенных способов относятся также качественный анализ исследуемого объекта, а также построение и визуальный анализ графика зависимости уровней временного ряда от времени.
24. моделирование сезонных и циклических колебаний
1. аддитивная и мультипликативная модели временного ряда.
Простейший подход к анализу структуры временного ряда – расчет значений сезонных колебаний методом входящей средней и построение аддитивной модели временного ряда. Общий вид мультипликативной модели: Y=TSE, где T –тренд, S- сезонная компонента, E – случайная компонента. Аддитивная модель: Y=T+S+E. Построение аддитивной и мультипликативной моделей сводится к расчету T,S,Eкаждого уровня временного ряда.
Процесс построения аддитивной и мультипликативной моделей.
1. выравнивание исходных уровней ряда методом входящей средней.
2. расчет сезонной компоненты S.
3. устроение сезонной компоненты из исходных уровней ряда, получение выровненных данных T+Е для аддитивной и ТЕ для мультипликативной моделей.
4. аналитическое выравнивание уравнений Т+Е и ТЕ и расчет значений тренда Т с использованием полученного уравнения тренда.
5. расчет полученных по модели значений Т+S и TS.
6. расчет абсолютных или относительных ошибок.
Если значение ошибок не содержит автокорреляции, то ими можно исходные уровни временного ряда и в дальнейшем использовать временной ряд ошибок Е.
2. применение фиктивных переменных для моделирования сезонных колебаний.
Еще один способ для моделирования сезонных колебаний – построение уравнения регрессии, с включением фактора времени и фиктивных переменных. При этом количество фиктивных переменных должно быть на 1 меньше числа моментов времени внутри одного цикла колебаний. Каждая фиктивная переменная отражает сезонную компоненту для какого-било одного периода и одна равна 1 для данного периода и 0 для всех остальных периодов. Пусть имеется временной ряд, содержащий циклические колебания с периодичностью 2, тогда модель регрессии с фиктивными переменными для этого ряда будет иметь вид:
y=a+bt+b1x1+b2x2+bjxj+…+b(k-1)x(k-1)+E, где