Смекни!
smekni.com

Особенности эконометрического метода (стр. 1 из 8)

1. предмет эконометрики

Специфической особенностью деятельности экономиста является работа в условиях недостатка информации и неполноты исходных данных. Анализ такой информации требует специальных методов, которые составляют один из аспектов эконометрики. Центральной проблемой эконометрики является построение эконометрической модели и определение возможности ее использования для описания, анализа, прогнозирования реальных экономических процессов. Эконометрика – быстроразвивающаяся отрасль науки, цель которой состоит в том, чтобы передать количественные меры экономическим отношениям. Термин эконометрика был впервые введен бухгалтером Цьемпой в 1910г. слово «эконометрика» состоит из 2 слов: «экономика» и «метрика». Сам термин подчеркивает специфику науки, т.е. количественное выражение тех связей и отношений, которые раскрыты и обоснованы экономической теорией. Эта наука возникла в результате взаимодействия 3 компонентов: экономической теории, математических методов, статистических методов. В последствии к ним присоединились развитие вычислительной техники. В настоящее время эконометрика располагает огромным разнообразием моделей от больших макроэкономических, включающих несколько сот или тысяч уравнений до малых уравнений, предназначенных для решения специфических проблем.

2. Особенности эконометрического метода

Становление и развитие эконометрического метода на методах вычислительной статистики: - на методах парной и множественной корреляции; - выделение тренда и др. компонентов временного ряда; - на статистическом оценивании.

Потребность в причинном объяснении корреляции привела к созданию путевого анализа, - основан на изучении всей структуры причинной связи между переменными, т.е. на построении графа. Его основным положением является то, что оценки стандартизированных коэффициентов и рекурсивной системы уравнений, которые называются коэффициентами влияния, рассчитываются на основе коэффициентов парной корреляции. При работе с временными рядами разных показателей и при изучении взаимосвязи между ними была осознана проблема ложной корреляции, которая возникла под влиянием фактора ЛАГА, т.е. сдвига во времени. Большое внимание в эконометрики уделяется проблеме данных, т.е. специальным методом работы при наличии данных с пропусками, влияние обобщения данных и т.д. информация может отсутствовать по отд. единицам совокупности и быть на уровни только прежней, информация идет не по отд. организациям, а по районам. Результаты могут сильно отличаться. К проблеме данных относится также проблема селективной выборки в микроэкономике. Типичное направление в этой области: рынок труда; выявление факторов, влияющих на решение о выборке работы; какие экономические стимулы влияют на принятие решения о получении образования.

При этом выборка может быть не случайной, а ограничена какими-то определенными ситуациями, а не всеми возможными. Эффект самоселекции возникает тогда, когда объективный отбор подменяется «удобной выборкой». Эконометрическое исследование включает в себя решение сл. Проблем:

1. качественный анализ связей экономических переменных – выделение зависимых Уi и не зависимые Хк переменных. 2. подбор данных. 3. спецификация моделей связи между переменными. 4. оценка параметров модели. 5. проверка гипотез о свойствах распределения вероятностей для случайных компонентов: гипотезы о средней; дисперсии; ковариации. 6. введение фиктивных переменных. 7. выявление автокорреляции, лагов. 8. выявление тренда, циклической и случайной компоненты. 9. проверка остатков на гетероскедастичность (отсутствия норм распределения для регрессионной функции). 10. анализ структуры связей и построение системы одновременных уравнений. 11. моделирование на основе системы временных рядов. 12. построение рекульсивной модели. 13. проблема и идентификация и оценивания параметров.

Эконометрическая модель основана на диалектическом предположении о круге взаимосвязанных переменных. При всем стремлении к наилучшему описанию связи приоритет отдается качественному анализу.

Этапы эконометрического анализа.

1. построение проблемы. 2. получение данных и анализ их качества. 3. спецификация проблем. 4. оценка параметров. 5. интерпретация результатов.

3. Измерения в эконометрики

Понятие эконометрика включает эконометрические измерения. При этом измерение понимаются по-разному. Признаками измерения считают: получение, сравнение, упорядочивание информации.

Измерение предполагает выделение некоторого свойства, по которым производится сравнивание объекта. Др. понимание измерения исходит из числового выражения результатов, т.е. измерение понимается как операция, в результате которой получается числовое выражение величины, причем числа должны соответствовать наблюдаемым свойствам, качествам, закономерностям науки и т.д

Первый подход связан с наличием эталона, это определение измерения в узком смысле. Первый низший уровень изучения предполагает сравнение объектов по наличию или отсутствию исследуемого свойства. На этом уровне используются термины « нумерация», «классификация», « номинация» и т.д.

Второй уровень предполагает сравнение объектов по интенсивности проявляемых свойств. Здесь используются термины «шкалирование», « топология», и «упорядочивание».

Третий уровень – сравнение объектов с эталонами. Здесь термины « измерение» и «квантификация». Все понятия измерения могут быть объединены на базе определения шкалы измерения. Тип шкалы измерения определяется в допустимом преобразовании- преобразование, при котором сохраняется неизменным отношение между элементами системы. Для определения любой шкалы измерения надо дать название объекту, отождествить объект некоторым свойством или группой свойств. Если это преобразование оказывается единственным, то шкала называется шкалой наименования (номинальной). Измерением в этой шкале можно считать любую классификацию, по которой класс объектов получает наименование. Числа на этой шкале играют роль ярлыков и к ним не применимы правила арифметики. Номинальная шкала обладает только свойствами симметричности и транзитивности.

Симметричность означает, что отношения между градациями Х1 и Х2 сохраняются и между Х2 и Х1.

Транзитивность означает, что если Х1=Х2, а Х2=Х3, то Х1=Х3.

Шкала, в которой порядок элементов по уровню проявления некоторого свойств существенен, а количественное выражение не существенно называется порядковой (ранговой). Шкала порядка допускает операции «=», «≠», «>», «<». Порядковые данные возникают, например при определении предпочтений избирателей, экспертиз качества, при оценке землетрясений, оценке уровня интеллекта. Кроме порядковой и номинальной используется интервальная шкала. Измерение в ней более совершенно, чем в порядковой.

Примером интервальной шкалы могут служить измерения большинства эк. Параметров, т.к. производительность труда, себестоимость, рентабельность и т.д. для измерения эк параметров характерны специфические представления о точности. Точность измерения- его адекватность, т.е. соответствие реальным условиям. Проблема точности связана со сл. Проблемами:

1. определение понятия экономической величины.

2. определение эк.показателей.

3. разработка принципов измерения, конструирования, измерителей.

4. основание выбора типа шкал.

5. разработка правил формирования систем показателей.

6. выявление типов и определение методов устранения ошибок измерений.

7. выявление условий сравнимости эк. Величин.

Основной базой для эконометрических исследований служат данные официальной статистики или б.у.

4. парная регрессия и корреляция эконометрических исследований. спецификация моделей

В зависимости от количества факторов, включаемых в уравнение регрессии принято различать парную (простую) и множественную регрессии.

Парная регрессия- зависимость между 2 переменными Х и У, т.е. модель вида

, где у зависимая переменная (результативный признак), х – независимая переменная (факторный признак).

Множественная регрессия – зависимости между 2 и более числом факторов и переменной У, т.е. модель вида:

.

Любое эконометрическое исследование начинается со спецификации модели, т.е. формулировки вида модели. При этом парная регрессия достаточная, если имеется доминирующий фактор, который используется в качестве объясняющей переменной Х.

Уравнение парной регрессии характеризует связь между 2 переменными, которая проявляется как некоторая закономерность в целом по совокупности наблюдений. Практически же в каждом отдельном случае величина У складывается из 2 слагаемых ,

где Уj фактическое значение результативного признака,
теоретические значение результативного признака исходя из соответствующей матем. функции, Ej случайная величина, характеризуется отклонением реального значения результативного признака от теоретического, найденного из уравнения регрессии, Е- возмущение и включает в себя влияние неучтенных в модели факторов. Ее присутствие в модели порождено 3 источниками:

1. спецификация модели.

2. выборочный характер исходных данных.

3. особенности измерения переменных.

Основные зависимости, относящиеся к парной регрессии

от правильной спецификации зависит величина случайной ошибки. От тем меньше, чем в большей мере теоретические значения подходят к фактическим данным.

для получения хорошего результата из совокупности обычно исключают единицы с аномальными значениями результативного признака. В парной регрессии выбор вида моделей или математической функции возможен 3 способами: