Смекни!
smekni.com

Применение метода ветвей и границ для задач календарного планирования (стр. 1 из 3)

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РФ

Кафедра «Математика и финансовые приложения»

Курсовая работа по дисциплине

«Метод ветвей и границ в исследовании операций»

Применение метода ветвей и границ для задач календарного планирования

Москва 2011


Содержание

Введение

I. Описание задачи целочисленного программирования

II. Метод ветвей и границ

§1. Описание метода ветвей и границ

§2. Алгоритм действия метода ветвей и границ

§3. Общий алгоритм решения задач с помощью метода границ и ветвей, его суть

§4. Пример использования метода ветвей и границ

III. Применение метода ветвей и границ для задач календарного планирования

§1. Алгоритм решения задачи трех станков методом ветвей и границ

§1.1 Реккурентное вычисление A(sk), В(sk), C(sk) и условие доминирования

§1.2 Способ конструирования вариантов последовательностей s и вычисления оценок D(s) для каждого из них.

§2. Пример использования метода ветвей и границ в задаче трех станков

Список литературы

Приложения

Приложение 1

Приложение 2

Приложение 3


Введение

В своей курсовой работе мне хотелось бы рассмотреть применения метода ветвей и границ для задач календарного планирования. В контексте данной задачи будет дано общее описание метода ветвей и границ, его места в общей задаче целочисленного программирования.

Будут рассмотрены примеры, как простого применения метода, так и для задач календарного планирования (будет рассмотрена задача о трех станках).

Данная тема является чрезвычайно актуальной, ведь метод ветвей и границ в связи с простотой сущности алгоритма используется при работе на некоторых ЭВМ, а решения задач календарного планирования всегда востребованы как в экономической отрасли, так и других, смежных с ней.


I. Описание задачи целочисленного программирования

По смыслу значительной части экономических задач, относятся к задачам линейного программирования, компоненты решения должны выражаться в целых числах, т.е. быть целочисленными. К ним относятся, например, задачи, в которых переменные означают количество единиц неделимой продукции, число станков при загрузке оборудования, число судов при распределениях по линиям, число турбин в энергосистеме, число вычислительных машин в управляющем комплексе и многие другие.

Задача линейного целочисленного программирования формируется следующим образом: найти такое решение (план) X = (x1,x2,...,xn), при котором линейная функция

(1)

принимает максимальное или минимальное значение при ограничениях:

= bi,
. (2)

хj³ 0,

. (3)

xjÎZ,

. (4).

II. Метод ветвей и границ

§1. Описание метода ветвей и границ

Метод ветвей и границ — один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

§2. Алгоритм действия метода ветвей и границ

Первоначально находим, к примеру, симплекс-методом оптимальный план задачи без учета целочисленности переменных. Пусть им является план X0. Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и Fmax= F(X0).

Если же среди компонент плана X0имеются дробные числа, то X0не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X0) ³F(X) для всякого последующего плана X в связи с увеличением количества ограничений.

Предполагая, что найденный оптимальный план X0не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная

приняла в плане X0дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу
, либо больше или равно ближайшему большему целому числу
. Определяя эти числа, находим симплекс-методом решение двух задач линейного программирования:

Найдем решение задач линейного программирования (5) и (6). Очевидно, здесь возможен один из следующих четырех случаев:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (5) и (6).

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой.

3.1. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

3.2. Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (5) и (6).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (5) и (6).

§3. Общий алгоритм решения задач с помощью метода границ и ветвей, его суть

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (5) и (6). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:

1. Находят решение задачи линейного программирования (1)-(3).

2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.

3. Находят решение задач (5) и (6), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.

4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (5) и (6), и находят их решение.

Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(4) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

§4. Пример использования метода ветвей и границ

В качестве примера к методу ветвей и границ рассмотрим функцию z=4х12+1®max (7) при ограничениях:


(8). x1, x2ÎZ,(9).

Пусть Х0 = (0; 0), z0 = 1 - «оптимальное»[1] решение (10).Выполним 1-й этап общего алгоритма и найдем с помощью симплекс-метода, а затем и двойственного симплекс-метода (см. Приложение 1) X1, исходя из ограничений (8). Итак, X1 = (3; 0,5; 0; 1; 0; 2,5), z1 = 13,5 (11). Так как z1 дробное, то «оптимальным» так и остается план Х0,