Смекни!
smekni.com

Полученная модель будет эквивалентна модели со случайным членом. Примечание: модель содержит значение регрессора и зависимой переменной в предыдущий момент времени.

21. Временные ряды, характеристики временных рядов, декомпозиция

Временно́й ряд— это упорядоченная (по времени) последовательность значений некоторой произвольной переменной величины. Каждое отдельное значение данной переменной называется отсчётом временного ряда. Тем самым, временной ряд существенным образом отличается от простой выборки данных.

Ана́лиз временны́х рядо́в — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогноза.

Временные ряды состоят из двух элементов:

. периода времени;

a. числовых значений того или иного показателя, называемых уровнями ряда.

Временные ряды классифицируются по следующим признакам:

· по форме представления уровней

· по характеру временного параметра: моментные и интервальные временные ряды.

· по расстоянию между датами и интервалами времени выделяют полные (равноотстоящие) – когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами и неполные (неравноотстоящие) – когда принцип равных интервалов не соблюдается.

· временные ряды бывают детерминированными и случайными: первые получают на основе значений некоторой неслучайной функции (ряд последовательных данных о количестве дней в месяцах); вторые есть результат реализации некоторой случайной величины.

· в зависимости от наличия основной тенденции выделяют стационарные ряды – в которых среднее значение и дисперсия постоянны и нестационарные – содержащие основную тенденцию развития.

· Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).

22. Стохастические регрессоры. Двухшаговый метод наименьших квадратов. Тест Хаусмана

Не всегда допустимо, что регрессоры не являются случайными величинами (и, соответственно, некоррелированы со случайным членом модели). Возможные причины:

1.При измерении значений регрессоров допускается возможность случайных ошибок (ошибок измерения) 2.В состав регрессоров входят лаги зависимой переменной, которые являются случайными величинами.

Рассмотрим сначала ситуацию, когда регрессоры являются стохастическими, но не взаимосвязаны со случайным членом модели:

Cov(Xj,ε) = 0, j=1,…, k

Пусть также матрица X имеет полный ранг (то есть ни одна из реализаций случайной матрицы не имеет линейно зависимых столбцов). В этом случае выполняются условия Гаусса-Маркова, а, следовательно, обычный метод наименьших квадратов позволяет получить несмещенные эффективные оценки неизвестных параметров модели. Если условие независимости регрессоров и случайного члена модели не выполняется, то оценки, полученные с помощью метода наименьших квадратов, будут:

1.Смещенными

2.Несостоятельными

Одним из возможных вариантов получения более хороших оценок параметров модели является использование инструментальных переменных

Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

На первом шаге с помощью обычного метода наименьших квадратов оценивают зависимость X от Z:

Прогнозные значения этой модели используются на втором шаге, для получения оценок неизвестных коэффициентов. Таким образом, необходимо выбрать между возможно несостоятельными, но эффективными МНК-оценками, и неэффективными, но состоятельными ИП-оценками.


Выбор между такими двумя оценками осуществляется на основе теста Хаусмана.

Данная статистика имеет распределение Хи-квадрат с m степенями свободы (m – количество инструментальных переменных) χ2(m) при выполнении нулевой гипотезы об отсутствии корреляции между регрессорами и случайным членом.

Соответственно, если наблюдаемое значение статистики не превысит критическое, то нулевая гипотеза не отклоняется и следует предпочесть обычные МНК-оценки, в противном случае – ИП- оценки.