Смекни!
smekni.com

Разработка программных средств анализа графика функции и решение оптимизационных задач (стр. 1 из 3)

СОДЕРЖАНИЕ

Введение

1 Введение в MicrosoftExcel

2 Основные функции в MicrosoftExcel

3 Формулы в MicrosoftExcel

4 Общие сведения об алгоритмах

5 Метод половинного деления

6 Решение задачи

7 Понятие оптимизационных задач и оптимизационных моделей

8 Решение задачи

Заключение

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д


ВВЕДЕНИЕ

Задачи, требующие оптимизации, встречаются в самых различных сферах человеческой деятельности, так как на их решении базируется принятие решений. Всегда люди, приступая к реализации своих действий, раздумывали над их возможными последствиями и принимали решения, выбирая тем или другим образом способы осуществления конкретных мероприятий. Каждое разумное действие является в определенном смысле и оптимальным, ибо оно, как правило, выбирается после сравнения с другими вариантами.

В связи со сложностью прикладных оптимизационных задач принятие решений в них все в меньшей мере стало основываться на «здоровом смысле», интуиции и опыте человека. Необходим научный подход, базирующийся на математическом описании решаемых проблем.

Первые задачи по изучению экстремальных свойств геометрических фигур (круг, квадрат и т.д.) были решены еще в древние века. Мощным толчком к развитию методов оптимизации послужило создание дифференциального и интегрального исчислений. В течение короткого промежутка времени были созданы новые разделы теории (линейное программирование, теория оптимального управления и т. д.), которые привели к разработке ряда эффективных численных методов решения разнообразных экстремальных задач.

В настоящее время для решения сложных статистических, коммерческих, научных и инженерных задач используют компьютер, который позволяет решать задачи со многими переменными. Входящий в наиболее широко распространенный программный пакет MicrosoftOffice табличный процессор Excel располагает средствами для решения широкого круга задач оптимизации:

1. Ассортимент продукции. Максимизация выпуска товаров при ограничениях на сырье для производства этих товаров.

2. Штатное расписание. Составление штатного расписания для достижения наилучших результатов при наименьших расходах.

3. Планирование перевозок. Минимизация затрат на транспортировку товаров.

4. Составление смеси. Достижение заданного качества смеси при наименьших расходах.


1 ВВЕДЕНИЕ В MicrosoftExcel

Любой вид деятельности требует систематизации хранимых данных. С расширением перечня продуктов, услуг и клиентов любому бизнесу необходима комплексная система для хранения большого объема финансовой и другой документации.

MicrosoftExcel – это программа, предназначенная для организации данных в таблицы для документирования, сопоставления и графического представления информации. Например, можно использовать Excel для суммирования, вычисления среднего или максимального числа продаж за день; создание графика, показывающего определенный процент продаж, сравнения общего объема продаж за день с тем же показателем других дней недели. Excel освобождает от проведения этих вычислений вручную.

При запуске Excel появляется пустой документ. С этого момента можно вводить информацию, изменять оформление данных, обрабатывать данные или искать информацию в файлах справки Excel

Главной составной частью документа MicrosoftExcel является поле, которое содержит определенную информацию. В Excel это поле называется ячейкой. Каждая ячейка находится на пересечении строки (горизонтальной последовательности ячеек) и столбцов (вертикальной последовательности ячеек); строки обозначены числами, а столбцы – буквами. Номер строки и буква столбца, обозначающие определенную ячейку, называется ссылкой на ячейку.

Рабочий лист состоит из набора строк и столбцов и представляет страницу в документе Excel. Рабочей книгой называется один или несколько рабочих листов. Создавая документ Excel, создается рабочая книга с тремя рабочими листами.


2 ОСНОВНЫЕ ФУНКЦИИ В MicrosoftExcel

функции – это специально созданные формулы для обработки данных. Программа Excel имеет сотни встроенных функций, которые предназначены для проведения самых разнообразных вычислений. Многие из этих функций нам и никогда и не понадобятся. Здесь есть как достаточно простые функции, например, тригонометрические, так и весьма сложные, например, функции для определения стандартного отклонения или для проведения статистического анализа.

Работая в Excel, почти всегда можно найти подходящую функцию, которая предназначена для решения самых разнообразных вычислительных задач. Эти функции разделены на следующие категории:

- финансовые;

- дата и время;

- математические;

- статистические;

- ссылки и массивы;

- работа с базой данных;

- текстовые;

- логические;

- инженерные.

Каждая функция имеет один или несколько аргументов. Аргументом называются значения, с которыми оперирует функция. В зависимости от формулы аргументом могут быть ссылка на ячейку, имя ячейки, диапазон ячеек, число, логическое значение или текст. У некоторых функций нет аргумента (например, функция ПИ).

Логические функции это функции типа если, и, не, истина, ложь. Эти функции используются для проверки условий и для определения, является ли то или иное утверждение истинным или ложным. Для оценки логических условий используются функции если, и, или, не.

Логические условия, формулы или функции могут возвращать значения истина или ложь. Логическое условие может быть либо правдой, либо ложью.

Функция ИЛИ возвращает ИСТИНА, если хотя бы один из аргументов имеет значение ИСТИНА; возвращает ЛОЖЬ, если все аргументы имеют значение ЛОЖЬ.

Функция НЕ меняет на противоположное значение своего аргумента. Если аргумент имеет значение ИСТИНА, функция НЕ возвращает значение ЛОЖЬ и наоборот.

С помощью функции ЕСЛИ можно оценить до 30 логических условий и возвратить различные числовые или текстовые значения, в зависимости от того, будут ли логические условия истинными или ложными.

В MicrosoftExcel имеется только одна категория математических функций, но для удобства рассмотрения ее можно разбить на три типа:

1) арифметические функции;

2) алгебраические функции;

3) тригонометрические функции.

Арифметические функции используют такие математические действия, как сложение, вычитание, умножение и деление.

Алгебраические функции позволяют вычислять логарифмы, экспоненты, квадратные корни и другие.

Тригонометрические функции позволяют вычислить синусы, косинусы, тангенсы и так далее.

3 ФОРМУЛЫ В MICROSOFTEXCEL

Формулы представляют собой выражения, по которым выполняются вычисления на странице. Формула начинается со знака равенства (=).

Формула также может включать следующие элементы:

- функции;

- ссылки;

- операторы (знак или символ, задающий тип вычисления в формуле. Существуют математические, логические операторы, операторы сравнения и ссылок);

- константы (постоянное (не вычисляемое) значение).

Ссылка указывает на ячейку или диапазон ячеек листа и передает в Microsoft Excel сведения о расположении значений или данных, которые требуется использовать в формуле. При помощи ссылок можно использовать в одной формуле данные, находящиеся в разных частях листа, а также использовать в нескольких формулах значение одной ячейки. Кроме того, можно задавать ссылки на ячейки других листов той же книги и на другие книги. Ссылки на ячейки других книг называются связями.

Существуют относительные, абсолютные и смешанные ссылки.

Относительная ссылка в формуле, например A1, основана на относительной позиции ячейки, содержащей формулу, и ячейку, на которую указывает ссылка. При изменении позиции ячейки, содержащей формулу, изменяется и ссылка.

Абсолютная ссылка ячейки в формуле, например $A$1, всегда ссылается на ячейку, расположенную в определенном месте. При изменении позиции ячейки, содержащей формулу, абсолютная ссылка не изменяется.

Смешанная ссылка содержит либо абсолютный столбец и относительную строку, либо абсолютную строку и относительный столбец. Абсолютная ссылка столбцов приобретает вид $A1, $B1 и т. д. Абсолютная ссылка строки приобретает вид A$1, B$1 и т. д.

4 Общие сведения об алгоритмах.

Алгоритм – предписание последовательности действий, направленных на решение поставленной задачи. В Exel алгоритм записывается в виде последовательности операторов, включающих значение, ссылки и формулы.

Алгоритм обладает свойствами:

1) однозначности – исключает произвольное толкование и приводит к одному и тому же результату при одинаковых исходных данных;

2) массовости – применяется к другим подобным задачам;

3) результативность – пошаговое выполнение задачи приводит к конечному результату.

Выделяется несколько типов алгоритмических структур:

1. Линейная структура.

2. Разветвляющая структура:

а) с одной ветвью;

б) с двумя ветвями;

в) со множеством ветвей.

3. Циклическая структура.

Принято выделять две циклические структуры с логическим условием дои после тела цикла.

Применительно к электронным таблицам это не совсем точно и справедливо, так как важен и способ организации выхода из цикла, а это:

- бесконечный цикл;

- вложенные циклические структуры;

- цикл с заданным заранее количеством повторений;

-расчетно-динамический цикл (новый, характерный для электронной таблицы), количество повторений которого определяется в ходе пересчета таблицы, а параметры задаются в результате ссылки на ячейку, где содержаться расчетно-переменные данные.

- итерационный цикл (количество повторений заранее неизвестно и зависит от осуществления или достижения заданной точности или последовательности приближений к искомому значению, где вычисление последующего члена производится через предыдущий член);


5 Метод половинного деления

Этот метод отличается от выше рассмотренных методов тем, что для него не требуется выполнения условия, что первая и вторая производная сохраняют знак на интервале [a, b]. Метод половинного деления сходится для любых непрерывных функций f(x) в том числе недифференцируемых.