Смекни!
smekni.com

Дисперсионный анализ при помощи системы MINITAB для WINDOWS (стр. 3 из 6)


3. Дисперсионный анализ в системе MINITAB

Для проведения дисперсионного анализа в системе MINITAB необходимо выбрать из меню Stat > ANOVA.

Различные возможности проведения дисперсионного анализа представлены следующими командами.

Команда Oneway позволяет провести однофакторный дисперсионный анализ, если значения выходного и влияющего параметра записаны в двух столбцах.

Команда Oneway(Unstacked) позволяет провести однофакторный дисперсионный анализ, если значения выходного параметра разбито на группы и значения для каждой группы записаны в разных столбцах.

Команда Twoway позволяет провести двухфакторный анализ для сбалансированных данных (с одинаковым количеством значений в каждой ячейке).

Команда Balanced ANOVA позволяет провести многофакторный дисперсионный анализ для сбалансированных моделей с перекрестной и иерархической классификацией.

Команда General Linear Model позволяет провести многофакторный несбалансированный дисперсионный анализ для моделей с перекрестной и иерархической классификацией.

3.2.1. Однофакторный дисперсионный анализ

Для проведения однофакторного дисперсионного анализа необходимо подготовить данные в двух столбцах (в первом – входная переменная, качественная, во втором – выходная переменная), выбрать из меню Stat > ANOVA > Oneway и заполнить открывшееся диалоговое окно.

Диалоговое окно.

1. Отклик (Response) – выберите столбец, содержащий выходную (зависимую) переменную. Столбец должен содержать только числовые значения.

2. Фактор (Factor) – выберите столбец, содержащий качественную переменную, влияние которой исследуется. Фактор может иметь как числовые, так и символьные значения.

3. Сохранить остатки (Store Residuals), выбирается, если необходимо сохранить остатки для последующего анализа. Остатки сохраняются в свободном столбце.

4. Сохранить оценки (Store fits) Для однофакторного анализа оценки это средние значения для каждого уровня фактора.

5. Графики <Graphs> представляют данные в виде точечных и блочных диаграмм для каждой группы с отмеченным средним значением.

Пример 1

Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены следующей таблицей.

Таблица 4.

Исходные данные

Field Owner d
Пищевая Частн 31
Пищевая Частн 49
Пищевая Частн 37
Пищевая Госуд 47
Пищевая Госуд 57
Пищевая Госуд 53
Машиностр Госуд 43
Машиностр Госуд 59
Машиностр Госуд 56
Машиностр Частн 47
Машиностр Частн 51
Машиностр Частн 53

Определим зависимость износа оборудования от отрасли промышленности.

В этом случае в диалоговом окне указываются следующие значения

Response: d

Factor: field

Результаты дисперсионного анализа включают таблицу анализа дисперсии, таблицу средних значений уровней факторов, индивидуальные доверительные интервалы для каждого уровня и общее стандартное отклонение. На рис.1 представлен листинг результатов вычислений. На рисунке используются следующие обозначения:

DF – число степеней свободы,

SS - сумма квадратов,

MS – средний квадрат,

F - отношение Фишера,

P - уровень значимости для вычисленного F,

Level – уровень фактора,

Mean – среднее значение,

StDev – стандартноеотклонение.

One-Way Analysis of Variance

Analysis of Variance for d

Source DF SS MS F P

field 1 102.1 102.1 1.55 0.241

Error 10 656.8 65.7

Total 11 758.9

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev -------+---------+---------+---------

Пищевая 6 45.667 9.852 (-----------*-----------)

Машиност 6 51.500 5.857 (-----------*-----------)

-------+---------+---------+---------

Pooled StDev = 8.105 42.0 48.0 54.0

Рис.1 Листинг результатов вычислений для однофакторной модели

Если значения выходной переменной разбито на группы и каждая группа записана в отдельном столбце, то для проведения однофакторного дисперсионного анализа необходимо выбрать из меню Stat > ANOVA > Oneway [Unstacked] и заполнить следующее диалоговое окно.

Диалоговое окно

1. Отклик в нескольких столбцах Responses [in separate columns] - выберите столбцы, содержащие выходную (зависимую) переменную. Столбцы должны содержать только числовые значения. Система не требует, чтобы в каждом столбце было одинаковое число наблюдений.

2. Графики <Graphs> представляют данные в виде точечных и блочных диаграмм для каждой группы с отмеченным средним значением.

Пример 2

Пусть данные о проценте износа оборудования для 12 предприятий двух отраслей промышленности (пищевая - field1, машиностроение - field2) представлены в табл.5.

Таблица 5.

Исходные данные

Field1 Field2
31 59
49 56
37 47
47 51
57 53
53
43

В этом случае в диалоговом окне указываются следующие значения.

Responses [in separate columns]: field1 field2

Результатом дисперсионного анализа будет таблица представленная на рис.2.

One-Way Analysis of Variance

Analysis of Variance

Source DF SS MS F P

Factor 1 182.7 182.7 3.17 0.105

Error 10 576.2 57.6

Total 11 758.9

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+

field1 7 45.286 9.050 (---------*----------)

field2 5 53.200 4.604 (------------*-----------)

------+---------+---------+---------+

PooledStDev = 7.591 42.0 48.0 54.0 60.0

Рис.2 Листинг результатов вычислений

Из полученных результатов видно, что P>

(
=0.05), значит принимается нулевая гипотеза и мы можем сделать вывод о том, что влияние фактора отрасли на уровень износа оборудования незначимо.

Если в опции <Graphs> указать Dotplots of data:Ö, то будет построен следующий график (чертой отмечено среднее значение для группы).



Рис.3 Представление экспериментальных данных

3.2.2. Двухфакторный дисперсионный анализ

Для проведения двухфакторного дисперсионного анализа необходимо подготовить данные, выбрать из меню Stat > ANOVA > Balanced ANOVA и заполнить открывшееся диалоговое окно.

Эта функция позволяет проводить, как одномерный, так и многомерный анализ дисперсии. Факторы могут быть связаны как перекрестно, так и иерархически, они могут быть детерминированными и случайными, однако данные должны быть сбалансированы. Это значит, что для каждого уровня A должны быть одинаковые уровни фактора B, и в том же количестве.

Диалоговое окно.

1. Отклики (Responses) – выберите столбцы, содержащие выходные (зависимые) переменные. Система позволяет анализировать до 50 выходных переменных.

2. Модель (Model) – укажите переменные или их комбинацию, которые включаются в модель.

3. Случайные факторы (Random Factors) – укажите столбец, содержащий случайную переменную.

Пример 3

Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены в табл.1. Определим, как влияют отрасль промышленности, форма собственности и их взаимодействие на процент износа оборудование. Для этого выберем из меню Stat > ANOVA > Balanced ANOVA и заполним диалоговое окно следующим образом

Responses: d

Model: field owner field*owner

Результаты дисперсионного анализа представлены на рис.4.

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

field fixed 2 ПищеваяМашиностр

owner fixed 2 частнгосуд

Analysis of Variance for d

Source DF SS MS F P

field 1 102.08 102.08 2.14 0.182

owner 1 184.08 184.08 3.86 0.085

field*owner 1 90.75 90.75 1.90 0.205