1) постановку задачи моделирования согласно намеченному объекту моделирования, т.е. разработку технического задания;
2) выбор метода построения математической модели;
3) разработку численного алгоритма решения полученной модели;
4) написание программы, реализующей численный алгоритм, отладку программы, контрольные расчеты;
5) проведение расчетов для получения выходных параметров;
6) проверку модели на адекватность;
7) поиск новой модели при значительном расхождении расчетных и экспериментально полученных параметров и переход к шагу 3.
Эти этапы тесно связаны между собой, и поэтому их расчленение является до некоторой степени искусственным. Так, математическая модель обычно строится с ориентацией на предполагаемый метод решения математической задачи. С другой стороны, в процессе проведения математического исследования или интерпретации решения может понадобиться уточнить или даже существенно изменить математическую модель. Умение правильно выбрать математическую модель находится на грани науки и искусства [1]. Оно требует не только необходимых математических и прикладных знаний и опыта, но также вкуса и чувства соразмерности.
Направление дальнейшего развитие концепции «модель–эксперимент» связано с введением Самарским понятия «вычислительный эксперимент». Самарский понимал под вычислительным экспериментом такую организацию исследований, при которой на основе математических моделей изучаются свойства объектов и явлений, проигрывается их поведение в различных условиях и на основе этого принимается решение о достижении цели эксперимента. Широкое применение ЭВМ в математическом моделировании, достаточно мощная теоретическая и экспериментальная база позволяют говорить о вычислительном эксперименте как о новой технологии и методологии в научных и прикладных исследованиях. Вычислительный эксперимент играет ту же роль, что и обыкновенный эксперимент при исследованиях новых гипотез (современная гипотеза почти всегда имеет математическое описание, над которым можно выполнять эксперименты).
Следует отметить, что в рамках концепции моделирования, начиная с конца 60-х годов, развивается такое направление, как имитационный анализ сложных процессов. Далее вводится понятие «имитационная модель», для которого существовали различные трактовки [2]:
1) под имитационной моделью понимается математическая модель в классическом смысле; 2) термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются случайные воздействия или сценарии; 3) предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится.
Следует отметить в английском языке – "simulation modeling" термин имеет вполне четкий смысл, ведь симуляция и моделирование не являются синонимами, в русском переводе термина, как имитационная модель – это следствие некорректности перевода. Любая модель, в принципе, имитационная, т.к. она имитирует реальность. Поэтому как подметил Адлер, сочетание слов имитация и моделирование, с точки зрения здравого смысла, недопустимо и является тавтологией. Однако с позиции этимологии, напрашивается заключение о том, что это словосочетание как термин определяет в теории моделирования такую область, которая относится к получению экспериментальной информации о сложном объекте, которая не может быть получена иным путем, как экспериментируя с его моделью на вычислительной модели. Важной особенностью термина является требование повторяемости, ибо один отдельно взятый эксперимент мало информативен. Для исследователя представляют интерес выводы, носящие характер статистических показателей, оформленных, может быть, даже в виде графиков или таблиц, в которых каждому варианту исследуемых параметров поставлены в соответствие определенные средние значения с набором характеристик их распределения, без получения зависимости в аналитическом виде. Таким образом, термин «имитационное моделирование" определяет вычислительный эксперимент проведение, которого связано с имитацией реально существующего процесса как объекта исследования. Эксперт с помощью этих моделей и серии специально организованных вариантных расчетов получает те знания, без которых выбрать альтернативный вариант своей стратегии он не может.
Дальнейшим развитием концепции основанной на понятии «имитационная модель» является понятие «имитационная система моделирования». Термин корректный, и с точки зрения здравого смысла, и оказался удобным для обозначения того объекта, который возникает, если, во-первых, отобразить математическую модель на совокупность программ, обеспечивающих «должную» степень удобства при общении с машиной в процессе проведения экспериментов. При этом термин «система» безусловно является одним из самых распространенных и используемых в различных областях человеческой деятельности. Этот термин чрезмерно перегружен и имеет различный смысл при различных обстоятельствах и для различных людей. С целью повышения практической полезности система любой природы описывается с трех точек зрения: 1) функциональной; 2) морфологической; 3) информационной [3].
С точки зрения функционального описания имитационная система моделирования как объект исследования интересна прежде всего результатом своего существования, местом, которое она занимает среди других объектов в окружающем мире. Поэтому функциональное описание необходимо для того, чтобы осознать важность системы, определить ее место, оценить отношение к другим системам. Функциональное описание должно создать правильную ориентацию в отношении внешних связей системы, направлений ее возможного изменения.
Морфологическое описание должно дать представление о строении системы. Оно не может быть исчерпывающим, глубина описания, уровень детализации, т. е. выбор элементов, внутрь которых описание не проникает, определяются назначением описания. Морфологическое описание иерархично. Конкретизация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы. В иерархии описания может существовать такая ступень, где прежние описания, применявшиеся на более высоких ступенях, становятся непригодными и необходимо применить принципиально новый способ описания. Изучение морфологии начинается с элементного состава. Под элементом в данном случае понимается подсистема, внутрь которой описание не проникает. Элементный состав может быть гомогенным (содержать однотипные элементы), гетерогенным (содержать разнотипные элементы) и смешанным. Имитационная система моделирования представляет собой объект, состоящий из следующих основных трех частей:
1. Математической модели объекта исследования вместе с ее программной реализацией для компьютера.
2. Совокупности упрощенных моделей объекта или отдельных его сторон и алгоритмов, позволяющих решать исследовательские задачи.
3. Совокупность программ, реализующих интерфейс при общении с компьютером во время проведения имитационных экспериментов.
Важным признаком морфологии является назначение (свойства) элементов. В большинстве случаев объекты обладают практически бесконечным числом свойств, любое из которых можно вполне осмысленно изучать, и, как следствие, почти любой из этих объектов невозможно изучить полностью. Это означает, что необходимо отобрать ограниченное число характеристик, наилучшим образом описывающих конкретный объект как явление. Познание (отражение) разнообразных свойств объекта связано с получением информации об этих свойствах. При этом важно понимание информации как меры порядка, организованности, т.е. информации как характеристики структуры системы.
Информация – это упорядоченное (через принцип тождества и различия) отображение, позволяющее качественно или количественно охарактеризовать (раскрыть) объективные свойства как материальных, так и реализованных духовных систем (где виды упорядоченности – это структуры и законы композиции). Конструктивное значение категории системы в данном определении состоит в том, что она выступает средством исследования противоречий и закономерностей их динамики (эволюции) на различных уровнях – относительно существа вещей, с учетом таких их сторон как организация и целостность.
С целью совершенствования структуры принятия решений необходимо дальнейшее развитие концепции моделирования, основанной на понятии «имитационная модель» осуществляемое через понятие «имитационная система моделирования». Последний термин корректный, и с точки зрения здравого смысла, и оказался удобным для обозначения того объекта, который возникает, если, во-первых, отобразить математическую модель на совокупность программ, обеспечивающих «должную» степень удобства при общении с машиной в процессе проведения вычислительных экспериментов. Вычислительный эксперимент – это такой вид деятельности (предпринимаемой в целях научного познания и /или открытия объективных закономерностей), определяющий в теории моделирования область получения экспериментальной информации о сложном объекте испытания, которая не может быть получена иным путем, как экспериментируя с моделью объекта представленного в виде математических отношений. Вычислительный эксперимент как система в свой состав включает (см. рисунок 1) человеческий и технический факторы, совокупность методологических средств и процедур их взаимодействия. Иными словами, технический фактор как системы определяется, прежде всего, зависимостью любого технологического процесса от реализующего элемента данной системы (применяемые средства и предметы труда, методы, способы и приемы взаимодействия средств и предметов труда). Наконец, к реализующему элементу технического фактора моделирующей системы относится структура технологического процесса, т.е. его стадии, этапы, последовательность [4]. Важность человеческого фактора совершенно очевидна, так как техника без человека, применяющего ее на основе определенных технологических решений, - это просто набор элементов и деталей. Поэтому, рассматривая моделирующую систему, человек и техника должны рассматриваться в качестве единого функционирующего целого, причем ведущая целеполагающая роль в этом целом принадлежит человеку. Это относится к реализующей системе, в которой средства и предметы труда, хотя и зависят от технических их свойств, но возможные технологические их применения определяются человеком [5, 6]. При этом человеком намечается структура технологического процесса с его стадиями, этапами, последовательностью. В ходе вычислительного эксперимента, являющегося одновременно технологическим, осуществляются взаимодействия человека и техники по созданию как промежуточного, так и конечного результата исследований. При этом необходимо осознавать наличие специфики эксперимента как формы практической деятельности, заключающейся в том, что эксперимент выражает активное отношение человека к действительности. Поэтому, с методологической точки зрения, вычислительный эксперимент следует рассматривать как человеко–машинную систему с технологическими средствами получения выходной информации, необходимой для обслуживания специалистов в различных сферах человеческой деятельности.