Смекни!
smekni.com

Кредиты от коммерческого банка на жилищное строительство (стр. 2 из 5)

;

;

;

для t=3:

;

;

;

для t=4:

;

;

;

для t=5:

Обратим внимание на то, что здесь и в дальнейшем используются коэффициенты сезонности F(t-L), уточненные в предыдущем году (L=4):

;

;

;

Продолжая аналогично для, t = 6,7,8,…,16 строят модель Хольта-Уинтерса (табл. 4). Максимальное значение t, для которого можно находить коэффициенты модели, равно количеству имеющихся данных по экономическому показателю Y(t). В нашем примере данные приведены за 4 года, то есть за 16 кваралов. Максимальное значение t равно 16.

Таблица 4

Модель Хольта-Уинтерса

t Y(t) a(t) b(t) F(t) Yp(t) Абс.погр., E(t) Отн.погр., %

1

2

3

4

5

6

7

8

0

31,71 0,87 0,7858

1

28,0 32,58 0,87 0,8594 28,01 -0,01

0,02

2

36,0 33,42 0,86 1,0782 36,11 -0,11

0,32

3

43,0 34,11 0,81 1,2661 43,69 -0,69

1,60

4

28,0 35,14 0,87 0,7924 27,44 0,56

1,99

5

31,0 36,03 0,88 0,8600 30,95 0,05

0,16

6

40,0 36,97 0,90 1,0805 39,80 0,20

0,51

7

49,0 38,11 0,97 1,2778 47,94 1,06

2,17

8

30,0 38,72 0,86 19 30,97 -0,97

3,24

9

34,0 39,57 0,86 0,8596 34,04 -0,04

0,11

10 44,0 40,51 0,88 1,0839 43,68 0,32

0,73

11 52,0 41,19 0,82 1,2687 52,90 -0,90

1,73

12 33,0 42,07 0,84 0,7834 32,84 0,16

0,47

13 39,0 43,64 1,06 0,8800 36,88 2,12

5,43

14 48,0 44,58 1,02 1,0796 48,45 -0,45

0,95

15 58,0 45,64 1,03 1,2700 57,85 0,15

0,25

16 36,0 46,45 0,97 0,7783 36,56 -0,56

1,56

Проверка качества модели

Для того чтобы модель была качественной уровни, остаточного ряда E(t) (разности Y(t)-Yp(t) между фактическими и расчетными значениями экономического показателя) должны удовлетворять определенным условиям (точности и адекватности). Для проверки выполнения этих условий составим таблицу 5.

Проверка точности модели

Будем считать, что условие точности выполнено, если относительная погрешность (абсолютное значение отклонения abs{E(t)}, поделенное на фактическое значение Y(t) и выраженное в процентах 100%·abs{E(t)}/Y(t)) в среднем не превышает 5%. Суммарное значение относительных погрешностей (см. гр. 8 табл. 4) составляет 21,25, что дает среднюю величину 21,25/16 = 1,33%.

Следовательно, условие точности выполнено.

Таблица 5

Промежуточные расчеты для оценки адекватности модели

Квартал, t Отклонение, E(t) Точки поворота

E(t)2

[E(t)-E(t-1)]2 E(t)∙E(t-1)

1

2

3

4

5

6

1

-0,01

-

0,00

-

-

2

-0,11

0

0,01

0,01

0,00

3

-0,69

1

0,48

0,33

0,08

4

0,56

1

0,31

1,56

-0,38

5

0,05

1

0,00

0,26

0,03

6

0,20

0

0,04

0,02

0,01

7

1,06

1

1,13

0,74

0,22

8

-0,97

1

0,95

4,14

-1,03

9

-0,04

0

0,00

0,87

0,04

10

0,32

1

0,10

0,13

-0,01

11

-0,90

1

0,80

1,49

-0,29

12

0,16

0

0,02

1,11

-0,14

13

2,12

1

4,49

3,85

0,33

14

-0,45

1

0,21

6,62

-0,96

15

0,15

1

0,02

0,36

-0,07

16

-0,56

-

0,32

0,50

-0,08

S

0,88

10

8,88

21,98

-2,27

Проверка условия адекватности

Для того чтобы модель была адекватна исследуемому процессу, ряд остатков E(t) должен обладать свойствами случайности, независимости последовательных уровней, нормальности распределения.

Проверка случайности уровней. Проверку случайности уровней остаточной компоненты (гр. 2 табл. 5) проводим на основе критерия поворотных точек. Для этого каждый уровень ряда E(t) сравниваем с двумя соседними. Если он больше (либо меньше) обоих соседних уровней, то точка считается поворотной и в гр. 3 табл. 5 для этой строки ставится 1, в противном случае в гр. 3 ставится 0. В первой и последней строке гр. 3 табл. 5 ставится прочерк или иной знак, так как у этого уровня нет двух соседних уровней.

Общее число поворотных точек в нашем примере равно р = 10.

Рассчитаем значение q:

.

Функция int означает, что от полученного значения берется только целая часть. При N = 16

.

Если количество поворотных точек р больше q, то условие случайности уровней выполнено. В нашем случае р = 10, q = 6, значит условие случайности уровней ряда остатков выполнено.

Проверка независимости уровней ряда остатков (отсутствия автокорреляции). Проверку проводим двумя методами:

1) по d-критерию Дарбина-Уотсона;

2) по первому коэффициенту автокорреляции r(1).

1)

.

Примечание. В случае если полученное значение больше 2, значит, имеет место отрицательная автокорреляция. В таком случае величину d уточняют, вычитая полученное значение из 4. Находим уточненное значение d`=4-2,47=1,53