Смекни!
smekni.com

Кредиты от коммерческого банка на жилищное строительство (стр. 1 из 5)

Задание 1

Приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).

Требуется:

1) Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания a1=0,3; a2=0,6; a3=0,3.

2) Оценить точность построенной модели с использованием средней относительной ошибки аппроксимации.

3) Оценить адекватность построенной модели на основе исследования:

- случайности остаточной компоненты по критерию пиков;

- независимости уровней ряда остатков по d-критерию (критические значения d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом значении r1 = 0,32;

- нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.

4) Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.

5) Отразить на графике фактические, расчетные и прогнозные данные.

Таблица 1

Поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года

t 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16
Y(t) 28 36 43 28 31 40 49 30 34 44 52 33 39 48 58 36

Решение

Будем считать, что зависимость между компонентами тренд-сезонный временный ряд мультипликативная. Мультипликативная модель Хольта-Уинтерса с линейным ростом имеет следующий вид:

, (1)

где k – период упреждения;

Yр(t) — расчетное значение экономического показателя для t-гo периода;

a(t), b(t) и F(t) - коэффициенты модели; они адаптируются, уточняются по мере перехода от членов ряда с номером t-1 к t;

F(t+k-L) - значение коэффициента сезонности того периода, для которого рассчитывается экономический показатель;

L - период сезонности (для квартальных данных L=4, для месячных – L=12).

Таким образом, если по формуле 1 рассчитывается значение экономического показателя, например за второй квартал, то F(t+k-L) как раз будет коэффициентом сезонности второго квартала предыдущего года.

Уточнение (адаптация к новому значению параметра времени t) коэффициентов модели производится с помощью формул:

; (2)

; (3)

. (4)

Параметры сглаживания a1, a2 и a3 подбирают путем перебора с таким расчетом, чтобы расчетные данные наилучшим образом соответствовали фактическим (т.е. чтобы обеспечить удовлетворительную адекватность и точность модели).

Из формул 1 - 4 видно, что для расчета а(1) и b(1) необходимо оценить значения этих коэффициентов для предыдущего период времени (т.е. для t=1-1=0). Значения а(0) и b(0) имеют смысл этих же коэффициентов для четвертого квартала года, предшествующего первому году, для которого имеются данные в табл. 1.

Для оценки начальных значений а(0) и b(0) применим линейную модель к первым 8 значениям Y(t) из табл. 1. Линейная модель имеет вид:

. (5)

Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения а(0) и b(0) по формулам 6 - 9:

; (6)

; (7)

; (8)

. (9)

Применяя линейную модель к первым 8 значениям ряда из таблицы 1 (т.е. к данным за первые 2 года), находим значения а(0) и b(0). Составим вспомогательную таблицу для определения параметров линейной модели:

Таблица 2

t

Y(t)

t-tcp

Y-Ycp

(t-tcp)2

(Y-Ycp)(t-tcp)

1

28

-3,5

-7,625

12,25

26,6875

2

36

-2,5

0,375

6,25

-0,9375

3

43

-1,5

7,375

2,25

-11,0625

4

28

-0,5

-7,625

0,25

3,8125

5

31

0,5

-4,625

0,25

-2,3125

6

40

1,5

4,375

2,25

6,5625

7

49

2,5

13,375

6,25

33,4375

8

30

3,5

-5,625

12,25

-19,6875

S

36

285

0

0

42

36,5

Уравнение (5) с учетом полученных коэффициентов имеет вид: Yp(t)=31,714+0,869·t. Из этого уравнения находим расчетные значения Yр(t) и сопоставляем их с фактическими значениями (табл. 3). Такое сопоставление позволяет оценить приближенные значения коэффициентов сезонности I-IV кварталов F(-3), F(-2), F(-1) и F(0) для года, предшествующего первому году, по которому имеются данные в табл. 1. Эти значения необходимы для расчета коэффициентов сезонности первого года F(1), F(2), F(3), F(4) и других параметров модели Хольта-Уинтерса по формулам 1 - 4.

Таблица 3

Сопоставление фактических данных Y(t) и рассчитанных по линейной модели значений Yp(t)

t 1 2 3 4 5 6 7 8
Y(t) 28 36 43 28 31 40 49 30
Yp(t) 32,583 33,452 34,321 35,190 306,060 36,929 37,798 38,667

Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели. Поэтому в качестве оценки коэффициента сезонности I квартала F(-3) может служить отношение фактических и расчетных значений Y(t) I квартала первого года, равное Y(1)/Yр(1), и такое же отношение для I квартала второго года (т.е. за V квартал t=5) Y(5)/Yр(5). Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.

F(-3) = [ Y(1) / Yp(1) + Y(5) / Yp(5) ] / 2=[ 28 / 32,583 + 31 / 36,060 ] / 2 = 0,8595.

Аналогично находим оценки коэффициента сезонности для II, III и IV кварталов:

F(-2) = [Y(2) / Yp(2) + Y(6) / Yp(6) ] / 2 = 1,0797;

F(-1) = [Y(3) / Yp(3) + Y(7) / Yp(7) ] / 2 = 1,2746;

F(0) = [Y(4) / Yp(4) + Y(8) / Yp(8) ] / 2 = 0,7858.

Оценив значения а(0), b(0), а также F(-3), F(-2), F(-1) и F(0), можно перейти к построению адаптивной мультипликативной модели Хольта-Уинтерса с помощью формул 1 - 4.

Из условия задачи имеем параметры сглаживания a1=0,3; a2=0,6; a3=0,3. Рассчитаем значения Yp(t), a(t), b(t) и F(t) для t=l.

Из уравнения 1, полагая что t=0, k=1, находим Yр(1):

Из уравнений 2 - 4, полагая что t=1, находим:

;

;

.

Аналогично рассчитаем значения Yp(t), a(t), b(t) и F(t) для t=2: