Смекни!
smekni.com

Применение экономико-математических методов для решения экономических задач (стр. 4 из 5)

Критерий оптимальности выполнен и задача решена если все коэффициенты индексной строки

. Если хотя бы один коэффициент индексной строки < 0, то решение не оптимально, его можно улучшить построением другого решения.

Для построения нового решения требуется:

1. среди < 0 коэффициентов индексной строки выбрать наибольшее по абсолютной величине. Столбец в котором находится выбранный коэффициент – разрешающий.

2. для всех элементов разрешающего столбца имеющих одинаковые знаки со значением

находятся разрешающие коэффициенты

3. среди всех разрешающих коэффициентов выбирают наименьший, ему соответствует разрешающая строка и переменная выводимая из базиса.

4. на пересечении разрешающей строки и разрешающего столбца находится разрешающий элемент

5. происходит пересчет симплексной таблицы

· меняется одна базисная переменная

· находятся элементы разрешающей строки

· коэффициенты системных ограничений при базисных переменных образуют единичную матрицу

· все остальные клетки симплексной таблицы, включая индексную строку, находятся по правилу прямоугольника

Каждому новому решению задачи соответствует один итерационный процесс и одна симплексная таблица.

3.Исследование задач выбора производственного решения

При образовании предприятия основным вопросом является, что производить. Определившись с примерным направлением производства и ассортиментом необходимо просчитать, основываясь на статистики или на данных работающих в данной отрасли предприятий, наиболее рентабельный вид продукта используя теорию игр.

Предприятию, производящему изделия из водоотталкивающих тканей, необходимо принять решение о производстве зонтов, плащей, туристических палаток и сумок в зависимости от того, будет ли погода умеренной или дождливой. Доходы от реализации при каждом из состояний погоды, в млн. у.е. составили:

Таблица 3.1.

дождливая умеренная
зонты 1,05 0,96
плащи 1,3 1,02
палатки 0,8 0,9
сумки 1 1,2

Необходимо принять решение о вложении денежных средств в производство той продукции, которая обеспечит наибольшую возможную прибыль.

Поиск решения с помощью минимаксного критерия.

Составляется платежная матрица:

Таблица 3.2.

F1 F2
Е1 1,05 0,96 0,96
Е2 1,3 1,02 1,02
Е3 0,8 0,9 0,8
Е4 1 1,2 1
1,3 1,2

Получаем что нижняя чистая цена игры

= max
= 1.02,

а верхняя чистая цена игры

= min
= 1.2

Таким образом получаем, что α ≠ β следовательно седловая точка отсутствует. Согласно ММ-критерию следует проводить полную проверку, т.к. упростить платежную матрицу нельзя, потому что нет доминируемых стратегий. Вообще, в играх с природой нельзя отбрасывать те или иные состояния природы, поскольку она может реализовать любое свое состояние независимо, выгодно оно предприятию или нет.

Критерий Байеса – Лапласа.

В нашей задаче

. Средние выигрыши помещены в столбце
.

Таблица 3.3.

F1 F2
Е1 1,05 0,96 1,005
Е2 1,3 1,02 1,16
Е3 0,8 0,9 0,85
Е4 1 1,2 1,1

Оптимальной по Байесу-Лапласу является чистая стратегия Е2. В интересах объективности можно найти средние значения

вероятностей, определенных квалифицированными экспертами для каждого состояния на основе их субъективного опыта.

Т.о. критерий Байеса-Лапласа более оптимистичен, чем минимаксный критерий, однако он предполагает большую информированность и достаточно длительную реализацию.

Критерий Сэвиджа.

В играх с природой нельзя что либо предсказать, т.к. она может реализовать любое состояние.

Перейдем к матрице рисков, она позволяет понять преимущество одной стратегии перед другой.

Таблица 3.4.

F1 F2
Е1 0,25 0,24 0,25
Е2 0 0,18 0,18
Е3 0,5 0,4 0,5
Е4 0,3 0 0,3

.

Выбираем стратегию Е2, с минимальной величиной риска.

Из показаний критериев видно, что наиболее прибыльным для предприятия будет производство зонтов, при любых погодных условиях.

Не менее важной и сложной задачей предприятия является определение необходимого объема выпускаемой продукции, особенно если наименований несколько. В подобных случаях используют симплексный метод.

Предприятие производит 3 вида продукции: А1, А2, А3, используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.

Таблица 3.5.

Сырье Затраты сырья на единицу продукции Запас сырья
А1 А2 А3
I 3,5 7 4,2 1400
II 4 5 8 2000
Прибыль от ед.прод. 1 3 3

Необходимо определить сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли.

Составим математическую модель задачи. Пусть x1, х2, х3 соответственно – количество единиц продукции А1, А2, А3, которую производит предприятие. По смыслу задачи эти переменные неотрицательны.

Тогда f(x1, x2, x3) = x1 + 3 x2 + 3 x3 – совокупная прибыль от продажи произведенной продукции, которую требуется максимизировать.

Подсчитаем затраты сырья:

Сырье 1-го типа: 3,5 х1 + 7 х2 + 4,2 х3, по условию затраты не превосходят 1400,

Сырье 2-го типа: 4 х1 + 5 х2 + 8 х3, по условию затраты не превосходят 2000.

Пришли к задаче линейного программирования:

f(x1, x2, x3) = x1 + 3 x2 + 3 x3 → max,

3,5 х1 + 7 х2 + 4,2 х3 ≤ 1400,

4 х1 + 5 х2 + 8 х3 ≤ 2000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Преобразуем первое ограничение:

3,5 х1 + 7 х2 + 4,2 х3 ≤ 1400, (поделим на 7)

0,5 х1 + 1 х2 + 0,6 х3 ≤ 200, (умножим на 10)

5 х1 + 10 х2 + 6 х3 ≤ 2000.

Получили задачу:

f(x1, x2, x3) = x1 + 3 x2 + 3 x3 → max,

5 х1 + 10 х2 + 6 х3 ≤ 2000,

4 х1 + 5 х2 + 8 х3 ≤ 2000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Решим данную задачу симплекс-методом. Введем дополнительные переменные х4, х5 для приведения задачи к каноническому виду:

f(x1, x2, x3) = x1 + 3 x2 + 3 x3 → max,

5 х1 + 10 х2 + 6 х3 + х4 = 2000,

4 х1 + 5 х2 + 8 х3 + х5 = 2000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

В качестве опорного плана выберем Х=(0, 0, 0, 2000, 2000). Составим симплекс-таблицу:

Таблица 3.6.

Базис План х1 х2 х3 х4 х5 δ ij
х4 2000 5 10 6 1 0 200
х5 2000 4 5 8 0 1 400
f 0 -1 -3 -3 0 0

В последней оценочной строке есть отрицательные оценки, поэтому нужно делать шаг симплекс-метода. Выбираем столбец с наименьшей оценкой, а затем разрешающий элемент – по наименьшему отношению свободных членов к коэффициентам столбца (отношения записаны в последнем столбце). Результат шага запишем в таблицу (разрешающий элемент будем выделять жирным). Аналогично будем повторять шаги, пока не придем к таблице с неотрицательными оценками.

Таблица 3.7.

Базис План х1 х2 х3 х4 х5 δ ij
х2 200 1/2 1 3/5 1/10 0 1000/3
х5 1000 3/2 0 5 -1/2 1 1000/5
f 600 1/2 0 -6/5 3/10 0

Таблица 3.8.

Базис План х1 х2 х3 х4 х5 δ ij
х4 80 8/25 1 0 4/25 -3/25 200
х3 200 3/10 0 1 -1/10 1/5 400
f 840 43/50 0 0 9/50 6/25

В последнем плане строка f не содержит отрицательных значений, план x1 = 0, x2 = 80, x3 = 200оптимален, целевая функция принимает максимальное значение 840(совокупная прибыль).

Дадим экономическую интерпретацию оптимального плана. Согласно этому плану необходимо произвести 0 единиц продукции типа А1, 80 единиц продукции типа А2, 200 единиц продукции типа А3.