В строке f оптимального плана в столбцах дополнительных переменных y*=(9/50, 6/25).
Двойственные оценки определяют дефицитность сырья. Так как y1*=9/50>0, y2*=6/25>0, то, согласно второй теореме двойственности сырье и 1го, и 2го типов полностью используется в оптимальном плане и является дефицитным сырьем.
Кроме того, значения двойственных оценок показывают, насколько возрастает доход предприятия при увеличении дефицитного сырья на единицу (соответственно, на 9/50 и на 6/25).
Говоря о применении экономико-математических моделей, мы подразумеваем не просто выполнение различного рода экономических расчетов, а использование математики для нахождения наилучших экономических решений, изучения экономических закономерностей, получения новых теоретических выводов (синтез экономических и математических знаний раскрывает новые возможности экономического анализа). Главные преимущества математики как средства научного познания раскрываются при построении математических моделей, заменяющих в определенном отношении исследуемые объекты. Экономико-математические модели, отражающие с помощью математических соотношений основных свойств экономических процессов и явлений, представляют собой эффективный инструмент исследования экономических проблем.
Целью написания курсовой работы было определение области применения экономико-математических методов в деятельности предприятия.
В связи с поставленной целью были решены следующие задачи:
· изучены основы экономико-математического анализа;
· определены задачи предприятия;
· определена области применения экономико-математических методов;
· описаны методические основы экономико-математических методов;
· применен метод теории игр для задачи выбора производственного решения;
· применен симплексный метод для решения задачи выбора производственного решения.
Экономико-математическое модели является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.
За последние 30-40 лет методы моделирования экономики разрабатывались очень интенсивно. Они строились для теоретических целей экономического анализа и для практических целей планирования, управления и прогноза. Содержательно модели экономики объединяют такие основные процессы: производство, планирование, управление, финансы и т.д. Однако в соответствующих моделях всегда упор делается на какой-нибудь один процесс (например, процесс планирования), тогда как все остальные представляются в упрощенном виде.
Можно говорить об эффективности применения методов моделирования в многих областях потому, что, во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем:
- изменчивость (динамичность)
- противоречивость поведения
- тенденция к ухудшению характеристик
- подверженность воздействию окружающей среды предопределяют выбор метода их исследования.
Проанализировав совокупность существующих методов, можно сделать следующие выводы. Традиционное управление производственно-хозяйственной и финансовой деятельностью закрытых систем осуществляется с помощью общеизвестных методов планирования и управления.
Теория игр как раздел исследования операций - это теория математических моделей, принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы. Она исследует ситуации, связанные с выбором наивыгоднейших производственных решений, организацией статистического контроля, хозяйственных взаимоотношений между предприятиями и т. д.
На примере видно как с использованием теории игр можно рассчитать производство, каких наименований продукции будет наиболее выгодно независимо от климатических условий.
Методы математического программирования - основное средство решения задач оптимизации производственно-хозяйственной деятельности. Все экономические задачи, решаемые с применением методов математического программирования, отличаются возможностью выбора решения из альтернатив и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из всех допустимо возможных вариантов лучший. Чаще других для этого используется симплексный метод.
Из расчетов видно, что выбор плана производства с использованием симплексного метода дает возможность не только рассчитать какой максимальный объем прибыли сможет получить предприятие при имеющихся производственных показателях, но и сделать выводы об изменении производственных запасов, для большей эффективности производства.
Таким образом, можно сказать, что область применения экономико-математических методов, в настоящее время, представляет собой немалые масштабы, что по большей части связано с развитием предпринимательства во всевозможных сферах, для становления, развития и процветания которых необходимы рациональные экономические решения.
1. Алесинская Т.В. Учебное пособие по решению задач по курсу Экономико-математические методы и модели. Таганрог,:ТРУ, 2002.
2. Баканов М. И., Мельник М. В., Шеремет А. Д. Теория экономического анализа. - М.: Финансы и статистика, 2005,
3. Гранберг А.Г. Математические модели социалистической экономики. –М.: Экономика, 2008.
4. Добрынина Г.И., Тарасевич Л.С. Экономическая теория : учебник для вузов – СПб.: Питер, 2009.
5. Дубов А.М., Лагоша Б.А. и др. Моделирование рисковых ситуаций в экономике и бизнесе: Учебное пособие для вузов /Общая редакция Б.А. Лагоши. – М.: Финансы и статистика, 2010
6. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. – М.: МГУ им. М.В. Ломоносова, ДИС, 2009.
7. Кантарович Л.В., Горстко А.Б. Оптимальные решения в экономике. –М.: Наука, 2009
8. Карандаев И.С. и др. Математические методы исследования операций в примерах и задачах. - М.: ГАУ, 2007.
9. Ковалев В.В. Финансовый анализ: методы и процедуры. –М., Финансы и статистика, 2006.
10. Кремер Н.Ш., Путко Б.А., Тришин И.М. и др. Исследование операций в экономике: Учебное пособие для вузов /Общая редакция Н.Ш. Кремера. – М.: Банки и биржи, ЮНИТИ, 2007.
11. Кремер Н.Ш., Путко Б.А., Тришин И.М. и др. Высшая математика для экономистов: Учебное пособие для вузов/ Общая редакция Н.Ш Кремера. – М.: Банки и биржи, ЮНИТИ, 2007.
12. Лотов А.В. Введение в экономико-математическое моделирование. – М.:Наука, 2008.
13. Малыхин В.И. Математическое моделирование экономики: Учебно-практическое пособие для вузов. – М.: УРАО, 2008.
14. Малыхин В.И. Математика в экономике: Учебное пособие. – М: Инфра-М, 2009.
15. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник: в 3 частях. – М.: Финансы и статистика, 2008.
16. Сулицкий В.Н. Методы статистического анализа в управлении: Учебное пособие. – М.: Дело, 2006.
17. Пинегина М.В. Математические методы и модели в экономике: Учебное пособие для вузов. – М.: Изд-во «Экзамен», 2007.
18. Трояновский В.М. Математическое моделирование в менеджменте: Учебное пособие. – М.: Изд-во РДЛ, 2005.
19. Фомин Г.П. Математические методы и модели в коммерческой деятельности: Учебник. – М.: Финансы и статистика, 2005.
20. Хазанова Л.Э. Математическое моделирование в экономике: Учебное пособие. – М.: Изд-во Бек, 2008.
21. Чавкин А.М. Методы и модели рационального управления в рыночной экономике: разработка управленческих решений. – М.: Финансы и статистика, 2010
22. Шеремет А.Д. Теория экономического анализа: Учебник.-2-е изд.,доп. –М.: ИНФРА-М, 2005.
23. Экономико-математические методы и модели: Учебное Пособие для Вузов /Общая редакция А.В. М, БГТУ, 2006