12. Если все выражение, в котором знак "^" соотносится с какой-то переменной, принадлежит к категории предложений, тогда в символике Расселла мы находим другой знак, с которым знак "^" можно отождествить. Им является знак (x^), используемый для образования символа класса, или же знак (x^y^), используемый в символике отношений. Ведь если "fx^" представляет функцию высказывания, то символ "(x^).fx" имеет денотатом то же, что и функтор "f", а следовательно то же, что "fx^" (если не обращать внимание на некоторые сложности, возникающие вследствие допущения интенсиональных функций, от рассмотрения которых Расселл отказался во втором издании Principia). То же можно сказать и об эквивалентности символов "(x^y^).fxy" и "fx^y^".
Мы будем пользоваться знаками (x^) или (x^y^) также и в тех случаях, когда выражение, к которому они относятся, не принадлежит к категории предложений, так что мы вообще будем писать "(x^).fx" вместо "fx^", а символ "fx^y^" можем заменить "(x^y^).fxy". Измененное написание знака "^" ту дает выгоду, что можно выделить всё выражение, на которое распространяется действие оператора, тогда как в предыдущем написании это не было возможно, что в сложных случаях может привести к многозначности. Кроме того, новое написание неоднократно позволяет поочередно применять оператор к выражению, т.е. допускает запись "(x^):(y^).fxy", которая отлична от "(x^y^).fxy" (в старом написании "fx^y^"). В новом написании более выразительно проявляется характер символа "^" как оператора.
13. Символ (x^) (или (x^y^) и т.п.) как оператор получает в нашей символике индексов индекс с чертой. Однако поскольку эти операторы могут быть применены к выражениям разных категорий значения и кроме того преобразуют их в выражения различных категорий значения, то символ "^" не всегда получает один и тот же индекс с чертой.
Обобщенное словесное определение (унарного) оператора "(x^)" звучит следующим образом: оператор "(x^)", относящийся к переменной X в выражении А, образует с этим выражением функтор, который с переменной X как со своим аргументом образует выражение, эквивалентное выражению А. Это можно продемонстрировать на следующем примере, в котором выражение А имеет вид "fx", а переменная X - вид "x": (x^).fx:x.:<-->.fx.
Из сказанного видно, что если выражение А, к которому относится оператор, имеет показатель "Е1", а переменная X - индекс "Е2", то оператор должен иметь индекс с чертой:
¦ Е1
¦----
¦ Е2
+-----
¦ Е1
В зависимости от того, какие индексы ставятся вместо "Е1" и "Е2", снабженный чертой индекс нашего оператора принимает различный вид.
Аналогично обстоит дело для многократных операторов типа (x^y^).
Как уже было отмечено, роль оператора "^", как кажется, исчерпывается связыванием переменной. Однако роль других операторов простирается дальше. Главное различие между функтором и оператором мы усматриваем в том, что оператор играет связывающую роль, которую функтор не выполняет. Это приводит к мысли, что роль таких операторов, которые не только связывают, возможно удастся разложить так, что связывающую роль оператора выполняет знак "^", тогда как вторую роль исполняет функтор. Введем, например, функтор "U", который получит индекс
s
---
s
---
n
т.е. с синтаксической точки зрения мы будем понимать его как такой функтор, который с функтором типа s/n как со своим аргументом образует предложение. Установивши таким образом категорию функтора "U", определим его, говоря: выражение "U(f)" является выполнимым на месте "f" всеми и только теми функторами типа s/n, которые с каждым именем образуют истинное предложение.
Итак, имеем: U(f).<-->.(Пx).fx .
Назовем такой функтор универсальным функтором. Тогда можно было бы заменить квантификатор всеобщности универсальным функтором везде в тех местах, где мы могли бы для высказывательной функции, к которой относится оператор "(Пx)", привести такой функтор, который со связанной оператором переменной как своим аргументом образовывал бы выражение, эквивалентное этой функции высказывания. Это всегда можно сделать при помощи оператора "x^", поскольку "(x^).fx как раз и является таким искомым для высказывательной функции "fx" функтором, в каком бы виде эта высказывательная функция не выступала. Следовательно, мы всегда можем вместо "(Пx).fx" писать U((x^).fx). Таким образом, роль квантификатора всеобщности удалось бы заменить комбинацией ролей универсального функтора и оператора "x^". Очевидно, что существует не только один универсальный функтор, но их много больше и отличаются они своими категориями значения в зависимости от категории значения функтора, который служит для них аргументом.
Благодаря эквивалентности U(f).<-->.(Пx).fx можно легко определить универсальный функтор при помощи квантификатора всеобщности. Зато его определение встречается с трудностями, если мы не хотим прибегать к квантификатору всеобщности. Однако по нашему мнению, суррогатом определения универсального функтора могли бы быть правила вывода, очерчивающие способ его использования в [теории] дедукции. Тогда символ "U" нашел бы в логике свое место открыто, как первичный знак и имел бы в системе этой науки выразительную позицию, чем контрабандный квантификатор всеобщности, который не принадлежит ни к определяемым, ни к первичным знакам логики.
Тогда нужно было бы или определить оператор "x^", или "протянуть" его в логику, подобно обычно протаскиваемому квантификатору всеобщности. Эту дилемму мы здесь разрешать не будем. Однако, если остановиться на контрабандном характере оператора x^, то позволим себе высказать допущение, что такая контрабанда, возможно, неплохо бы себя оправдала, поскольку все прочие операторы, которых в дедуктивных науках великое множество, можно заменить оператором "x^" и соответствующими функторами. По нашему мнению, была бы немалая польза, если бы мы везде могли бы пользоваться только одним видом операторов, а именно - оператором "x^".
К.Айдукевич, Перевод с немецкого Б.Т.Домбровского
Примечания
1) Stanislaw Lesniewski. Grundzuge eines neuen Systems der Grundlagen der Mathematik."Fundamenta Mathematicae".t.XIV,Warszawa 1929, str.13 и след., 67 и след. От Лесьневского мы принимаем только основную идею категорий значения и их разновидностей. За формулирование предлагаемых нами соответствующих дефиниций и пояснений, как и за подробности содержания, которое мы приписываем этому понятию, нельзя делать ответственным Лесьневского, поскольку он не устанавливает свои дефиниции вообще, но только для своей специальной символики и совершенно иным способом, в наивысшей степени точным и сугубо структурным.
2) Edmund Husserl Logische Untersuchungen. Bd.II, T.1 Zweite umgearbeitete Auflage. Halle a. d. S. 1913, str.294,295.305-312, 316-321,326-342.
3) R.Carnap Abriss der Logistik. Wien 1929, str.30; A.Tarski Pojecie prawdy w jezykach nauk dedukcyjnych.Warszawa 1933,str.67.
4) Выполнение первого и третьего условия еще не гарантирует синтаксической связности, ибо, например, выражение
"~ (ф, x)"
s s
--- -- n
s n
не является синтаксически связанным, хотя это выражение насквозь правильно составлено, а его показатель, к которому мы приходим следующим образом:
s s s
-- --n --s s
s n s
является простым индексом.
5) Ср. Jan Lukasiewicz Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalkul. Warszawa 1930, "Comptes rendus des seances de la Societe des Sciences et de Lettres de Varsovie" ,XXIII, Cl.III.
6) Ср. R.Carnap Abriss der Logistik. Wien 1929, str.13.
7) Строго говоря, не следует говорить об "аргументе" опера- тора, а вместо это нужно употреблять выражение, например, "опе- рандум". Наши предыдущие замечания, относящиеся к "правильному синтаксису" выражения, конечно, должны относится также и к отноше- ниям: оператор - операндум.