Саратовский государственный технический университет
Кафедра Электронного машиностроения
На тему:
Получение, свойства, области применения.
Выполнил :
студент II курса гр.
Горев Александр
Проверил:
Доцент Котина Н.М.
РЕФЕРАТ
Ключевые слова:
Полупроводник, неорганический полупроводник, органический полупроводник, кристаллический полупроводник, аморфный полупроводник, магнитный и немагнитный полупроводники, твердый раствор, алмазоподобный полупроводник, кристаллическая структура , донорно-акцепторная связь, электронно-дырочный переход, инжекционная электролюминесценция, инжекционный лазер.
ЦЕЛЬ РАБОТЫ:
Изучить получение, физические и химические свойства, области применения, строение и классификацию полупроводниковых материалов и алмазоподобных полупроводников.
СОДЕРЖАНИЕ
1. Реферат
2. Цель работы
3. Содержание
4. Введение
5. Основная часть
а)Классификация полупроводниковых материалов
б)Полупроводниковые соединения типа АIII В V
в)Физико-химические и электрические свойства
г)Применение полупроводниковых соединений типа АIII ВV
д)Строение и химическая связь полупроводниковых соединений типа АII ВVI
е)Применение полупроводниковых соединений типа АII ВVI
ж)Твердые растворы на основе соединений АIII ВV
6. Заключение
7. Список использованной литературы
Введение.
Изобретение радио великим русским учёным А.С. Поповым открыло новую эру в развитии науки и техники. Чтобы обеспечить развитие радиоэлектроники, потребовалось огромное количество радиодеталей и радиокомпонентов. В послевоенное десятилетие резисторы, конденсаторы, индуктивные катушки, электронные лампы и полупроводниковые приборы стали изготовляться в миллионных и миллиардных количествах. Собираемая из разнородных деталей электронная аппаратура во многих случаях была громоздкой, тяжелой и не достаточно надёжной. Так, средний телевизор содержал порядка тысячи радиодеталей и электронных приборов, занимая объем около 20 литров.
В настоящее время, с использованием современных методов обработки и получения материалов, удаётся на подложке в 1 квадратный сантиметр разместить до 600 000 функциональных элементов, но и это теоретически ещё не предел.
Классификация полупроводниковых материалов.
Полупроводники представляют собой весьма многочисленный класс материалов. В него входят сотни самых разнообразных веществ – как элементов, так и химических соединений. Полупроводниковыми свойствами могут обладать как неорганические, так и органические вещества, кристаллические и аморфные, твердые и жидкие, немагнитные и магнитные. Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно замечательное качество- способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий. Одна из возможных схем классификации полупроводниковых материалов приведена на рис.1
Рис. 1 Классификация полупроводниковыхматериалов по составу и свойствам.
Полупроводниковыми свойствами обладают и некоторые модификации олова и углерода.
Последний существуют двух аллотропных формах – алмаз и графит. Графит по электрическим свойствам близок к проводникам (ΔЭ <0,1 эВ), а чистые алмазы являются диэлектриками. Однако искусственные алмазы за счет вводимых примесей приобретают свойства полупроводников.
Весьма обширна группа полупроводниковых неорганических соединений, которые могут состоять из двух, трех и большего числа элементов. В качестве примеров таких соединений можно привести InSb, Bi 2 Te3 , ZnSiAs2 , CuAlS2 , CuGe2P3 . Кристаллическая структура многих соединений характеризуется тетраэдрической координацией атомов, как это имеет место в решетки алмаза. Такие полупроводниковые соединения получили название алмазоподобных полупроводников. Среди них наибольший научный и практический интерес представляют бинарные соединения типа AIII ВV и AII BVI , которые в настоящее время являются важнейшими материалами полупроводниковой оптоэлектроники.
Большинство алмазоподобных полупроводников с родственными свойствами образуют между собой изовалентные твердые растворы. В твердых растворах путем изменения состава можно плавно и в достаточно широких пределах управлять важнейшими свойствами полупроводников, в частности, шириной запрещенной зоны и подвижностью носителей заряда. Это открывает дополнительные возможности для оптимизации параметров полупроводниковых приборов, позволяет добиться лучшего согласования физических характеристик различных компонентов электронной аппаратуры.
Для изготовления полупроводниковых приборов используют как монокристаллы, так и поликристаллические материалы. Монокристаллы представляют собой более простые системы, с более совершенным строением, чем поликристаллические материалы. Они наиболее глубоко изучены, физические явления в них лучше поддаются расчетам, и они обеспечивают большую надежность и идентичность параметров полупроводниковых приборов.
В механизме электропроводности аморфных неорганических и кристаллических органических полупроводников выявлен ряд особенностей. Интерес к органическим полупроводникам вызван тем, что в некоторых из них полупроводниковые свойства сочетаются с эластичностью, которая позволяет изготавливать рабочие элементы в виде гибких лент и волокон.
Полупроводниковые соединения типа АIII В V .
Кристаллическая структура и химическая связь. Соединения А III ВV являются ближайшими электронными аналогами кремния и германия. Они образуют в результате взаимодействия элементов III-б подгруппы Периодической таблицы (бора, алюминия, галлия, индия) с элементами V-б подгруппы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда. Соединения АIII ВV принято классифицировать по металлоидному элементу. Соответственно, различают нитриды, фосфиды, арсениды и антимониды.
За исключением нитридов все соединения АIII ВV кристаллизуются в решетке цинковой обманки кубического типа (сфалерит). Для нитридов характерна структура гексогонального типа (вюрцит). В решетке того и другого типов каждый атом элемента III группы находится в тетраэдрическом окружении четырех атомов элемента Vгруппы и наоборот. Структура сфалерита в отличие от структуры алмаза не имеет центра симметрии. Эта особенность приводит к различию в свойствах поверхностей (111) и (111), целиком сложенных из разноименных атомов. Различное поведение граней проявляется при травлении, окислении и при выращивании кристаллов.
Для соединений А В характерен особый тип химической связи, называемый донорно- -акцепторной. Из четырех ковалентных связей, которыми каждый атом встраивается в решетку, три образуются обобществлением валентных электронов атомов АIII и ВV , а четвертая связь осуществляется неподеленной парой валентных электронов атомов ВV Образование этой связи соответствует энергетически выгодному переходу электронов от атома ВV в энергетическое состояние, общее для донора (атомов ВV) и акцептора (атома АIII).
В каждой ковалентной связи максимум электронной плотности смещен в сторону атома с более высокой электроотрицательностью,т. е. электронные облака стянуты к узлам решетки, где находятся атомы ВV . Благодаря такой поляризации связей атомы АIII приобретают некоторый эффективный положительный заряд, а атомы ВV –отрицательный. Величина этого эффективного заряда (± g) определяет степень ионности соединения, которая закономерно изменяется при переходе от одного соединения к другому в соответствии с положением химических элементов в Периодической таблице Д. И. Менделеева.
Физико-химические и электрические свойства. Полупроводниковые соединения АIII ВV образуют гомологический ряд, в котором наблюдается закономерное изменение многих свойств при изменении атомных номеров компонентов. Эти закономерности можно проследить с помощью табл.1
Соединение | Период Решетки ×10, нм | Плот- ность Мг/м2 | Темпе- ратура плавле- ния, 0 С | Твер- дость** | Аl ×106,К-1** | Шири- на запр. зоны.эВ | Подви- жность электро- нов, | Подви- жность дырок, м2/(В×с) | Показа тель прелом- ления при hν = ∆Э | Прони- цае- мость *** |
ВN(куб) АlN GaN InN | 3,615 3,110 (а) 4,975 (с) 3,186 (а) 5,176 (с) 3,540 (а) 5,704 (с) | 3,49 3,28 6,11 6,91 | 3000 2400 1700 1100 | 10 7 - - | - 6,1 5,65 - | 6,0 5,883,401,95 | - - 0,03 - | - - - | 2,1 2,2 2,4 2,9 | 7,1 9,1 12,2 - |
AlP GaP InP | 5,463 5,451 5,869 | 2,37 4,07 4,78 | 2000 1467 1070 | 5,5 5 - | 4,2 5,9 4,6 | 2,45 2,26 1,35 | 0,008 0,019 0,46 | 0,003 0,012 0,015 | 3,0 3,45 3,45 | 9,8 11,1 12,4 |
AlAs GaAs InAs | 5,661 5,653 6,058 | 3,60 5,32 5,67 | 1770 1237 942 | 5 4,5 4 | 5,2 6,4 5,3 | 2,16 1,43 0,36 | 0,028 0,95 3,3 | - 0,045 0,046 | 3,2 3,65 3,52 | 10,1 13,1 14,6 |
AlAb GaSb InSb | 6,136 6,096 6,479 | 4,28 5,65 5,78 | 1060 710 525 | 4,8 4,5 3,8 | 4,2 6,2 4,9 | 1, 58 0, 72 0,18 | 0, 02 0, 4 7,8 | 0,055 0,14 0,075 | 3,4 3,8 4,0 | 14,4 15,7 17,7 |
* -твердость по минералогической шкале