Смекни!
smekni.com

Геометрические характеристики поперечных сечений (стр. 1 из 2)

Основы конструирования приборов

Реферат по теме

Геометрические характеристики поперечных сечений

Студента группы ИУ 3-32

Кондратова Николая


Статические моменты сечения

Возьмем некоторое поперечное се­чение бруса (рис. 1). Свяжем его с системой координат х, у и рас­смотрим два следующих интеграла:

Рис. 1


(1)

где индекс F у знака интеграла указывает на то, что интегрирование ведется по всей площади сечения. Каждый из интегралов представ­ляет собой сумму произведений, элементарных площадокdF на рас­стояние до соответствующей оси или у). Первый интеграл называется статическим моментом сечения относительно оси х, а второй — относительно оси у. Размерность статического момента см3. При параллельном переносе осей величины статических моментов меняются. Рассмотрим две пары параллельных осей,x1,y1 и x2, y2.Пусть расстояние между осями x1 и x2 равно b, а между осями y2и y2 равно а (рис. 2). Положим, что площадь сечения F и статические моменты относительно осей x1 и y1, т. е. Sx1, и Sy1 заданы. Требуется определить Sx2 и Sy2.

Очевидно, х2 = x1 — а, y2 = y1 —b. Искомые статические мо­менты будут равны



или

Таким образом, при параллельном переносеосей статический момент меняется на величину, равную произведению площади F на расстояние между осями.

Рассмотрим более детально, например, первое из полученных выра­жений:


Величина b может быть любой: как положительной, так и отрицательной. Поэтому ее всегда можно подобрать (причем единственным образом) так, чтобы произведениеbF было равно Sx1.Тогда статический момент Sx2, относительно оси x2 обращается в нуль.

Ось, относительно которой статический момент равен нулю, называется центральной. Среди семейства параллельных осей она является единственной, и расстояние до этой оси от некоторой, про­извольно взятой, оси х1 равно

Рис. 2

Аналогично для другого семейства параллельных осей


Точка пересечения центральных осей называется центром тяже­сти сечения. Путем поворота осей можно показать, что статический момент относительно любой оси, проходящей через центр тяжести, равен нулю.

Нетрудно установить тождественность данного определения и обычного определения центра тяжести как точки приложения равно­действующих сил веса. Если уподобить рассмотренное сечение одно­родной пластинке, то сила веса пластинки во всех точках будет пропорциональна элементарной площади dF, а момент сил весаотносительно некоторой оси — пропорционален статическому мо­менту. Этот момент сил веса относительно оси, проходящей через центр тяжести, равен нулю. В нуль обращается, следовательно, и статический момент относительно центральной оси.

Моменты инерции сечения

В дополнение к статическим моментам рассмотрим еще три сле­дующих интеграла:


(2)

Через х и у обозначены текущие координаты эле­ментарной площадкиdF в произвольно взятой системе координат х, y. Первые два интеграла называются осевыми момен­тами инерции сечения относительно осей х и y соответственно. Третий интеграл называется центробежным моментом инерции сечения относительно осей х, у. Размерность моментов инерции см4.

Осевые моменты инерции всегда положительны, поскольку поло­жительной считается площадь dF. Центробежный момент инерции может быть как положительным, так и отрицательным, в зависи­мости от расположения сечения относительно осей х, у.

Выведем формулы преобразования моментов инерции при парал­лельном переносе осей. Будем считать, что нам заданы моменты инерции и статические моменты относительно осей х1 и y1. Требуется определить моменты инерции относительно осей x2 и y2


(3)

Подставляя сюда х2 = x1а и y2 =y1b и раскрывая скобки (согласно (1) и (2)) находим


Если оси x1 и y1 — центральные, то Sx1= Sy1 = 0. Тогда


(4)


Следовательно, при параллельном переносе осей (если одна из осей — центральная) осевые моменты инерции меняются на величину, равную произведению площади на квадрат расстояния между осями.

Из первых двух формул (4) следует, что в семействе парал­лельных осей минимальный момент инерции получается относи­тельно центральной оси = 0 или Ь = 0). Поэтому легко запом­нить, что при переходе от центральных осей к нецентральным осе­вые моменты инерции увеличиваются и величины a2F и b2F следует к моментам инерции прибавлять, а при переходе от нецентральных осей к центральным — вычитать.

При определении центробежного момента инерции по формулам (4) следует учитывать знак величин а и b. Можно, однако, и сразу установить, в какую сторону меняется величина Jxy при параллельном пере­носе осей. Для этого следует иметь в виду, что часть площади, находя­щаяся в I и III квадрантах системы координат x1y1, дает поло­жительное значение центробежного момента, а части, находящиеся в II и IV квадрантах, дают отрицательные значения. Поэтому при переносе осей проще всего устанавливать знак сла­гаемого abF в соответствии с тем, ка­кие из четырех слагаемых площадей увеличиваются и какие — уменьшают­ся.

ГЛАВНЫЕ ОСИ И ГЛАВНЫЕ МОМЕНТЫ ИНЕРЦИИ

Рис. 3

Посмотрим, как изменяют­ся моменты инерции при по­вороте осей координат. Поло­жим, даны моменты инерции некоторого сечения относительно осей х, у (не обязательно центральных). Требуется определить Ju, Jv, Juv моменты инерции относительно осей и, v, повернутых относительно первой системы на угол a (рис. 3).

Проектируем замкнутый четырехугольник ОАВСО на оси и и v. Так как проекция ломаной линии равна проекции замыкающей, на­ходим:

u = y sin a +x cos a, v = y cos a — x sin a

В выражениях (3), подставив вместо x1 и y1 соответственно u и v, исключаем u и v


откуда


(5)


Рассмотрим два первых уравнения. Складывая их почленно, получим, что сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла a и при пово­роте осей остается постоянной. При этом

x2 + y2 = r2

где r — расстояние от начала координат до элементарной площадки (рис. 3). Таким образом,

Jx + Jy = Jp

гдеJp полярный момент инерции


величина которого, естественно, не зависит от поворота осей ху.