Смекни!
smekni.com

Жидкостные ракетные двигатели (ЖРД) (стр. 1 из 5)

Оглавление
2 Аннотация
3 Задание на выпускную работу
4 Расчет параметров камеры и профилированного сопла. Определение действительных параметров двигателя.
5 Объединено с п.4
6 Расчет охлаждения камеры двигателя. (+ таблица в Ехселе ОХЛАЖДЕНИЕ НДМГ)
7 Расчет смесеобразования.
8 Проверочный расчет несущей способности камеры сгорания.(+ таблица в Ехселе Прочность окружн БрХ)
9 Спец часть работы
10 Описание работы ПГС двигательной установки
11 Описание конструкции двигателя по разрезу, представленному в графической части.
12 Литература
13 Приложения

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.

Ракетным двигателем (РД) называют реактивный двигатель, не использующий для своей работы из окружающей среды ни энергию, ни рабочее тело. Таким образом, РД — установка, имеющая источ­ник энергии и запас рабочего тела и предназначенная для получения тяги путем преобразования любого вида энергии в кинетическую энер­гию рабочего тела, отбрасываемого от двигателя в окружающую среду.

Ракетные двигатели обладают тремя основными характерными особенностями:

1) автономность от окружающей среды. Под автономностью РД нельзя понимать независимость его параметров от окружающей сре­ды, так как его выходные параметры в значительной степени зависят от окружающего давления (противодавления). Под автономностью следует понимать лишь способность РД работать без использования окружающей среды. Поэтому эти двигатели могут работать под водой, в атмосфере и в космическом (межпланетном) пространстве;

2) независимость тяги от скорости движения аппарата, так как тяга создается в нем за счет расхода запасов рабочего тела и энер­гии, имеющихся на этом аппарате. Поэтому эти двигатели способны функционировать при очень больших скоростях движения.

3) высокая концентрация подводимой энергии на единицу массы рабочего тела, обусловленная стремлением получить максимально возможную скорость истечения (отброса) реактивной струи, и, как следствие этого, большая энергонапряженность (теплонапряженность) рабочего процесса и малая удельная масса двигателя, приходящаяся на единицу развиваемой тяги.

Из рассмотренных основных характерных особенностей РД вы­текают целесообразные области их применения. Большое значение при этом имеет вид запасенной энергии, находящейся на борту ЛА. На современном уровне техники можно использовать в РД энергию, запасенную в форме ядерной, электрической, тепловой и хими­ческой.

Двигатели, использующие ядерную, электрическую и тепловую энергию, составляют класс нехимических РД. Эти двигатели пока на­ходятся в стадии теоретических разработок и опытных исследований.

Большинство практически применяемых в настоящее время РД использую? химическую энергию, носителем которой является топ­ливо. Топливо может быть одно-, двух- .и.. многокомпонентным. Чаще всего используют двухкомпонентное топливо, состоящее из горючего и окислителя. Источником энергии в этом случае является реакция горения (экзотермическая, идущая с выделением тепла). Экзотермиче­ской реакцией может быть также реакция разложения некоторых веществ, или ассоциация (рекомбинация) атомов и радикалов. Хими­ческая энергия топлива преобразуется в камере сгорания (КС) в теп­ловую энергию продуктов реакции (продуктов сгорания). Затем теп­ловая энергия в сопле переходит в кинетическую энергию вытекаю­щих продуктов сгорания (ПС), в результате чего образуется реактив­ная сила (тяга).

Химические РД (в зависимости от агрегатного состояния топлива до его использования в двигателе) можно разделить на следующие ос­новные группы: жидкостные ракетные двигатели (ЖРД); ракетные двигатели твердого топлива (РДТТ); гибридные (комбинированные) ракетные двигатели (ГРД), использующие топливо смешанного агре­гатного состояния.

Основной агрегат ЖРД, где создается тяга, — КС двигателя. На рис. 1.2 приведена камера ЖРД, работающая на двухкомпонент­ном топливе. Она состоит из камеры сгорания 6 и сопла 7, конструк­тивно представляют собой одно целое. Камера сгорания имеет смеси­тельную головку 4, на которой размещены специальные устройст­ва — форсунки 3 и 5, служащие для подачи компонентов топлива в КС. Стенки камеры изготавливают, как правило, двойными для со­здания зазора между внутренней огневой стенкой 2 и наружной си­ловой рубашкой /, связанных между собой с помощью гофр, ребер или выштамповок. По зазору протекает компонент или компоненты топлива, охлаждающие КС.

Рабочий процесс в камере ЖРД можно представить в следующем виде. Горючее и окислитель впрыскиваются под давлением в камеру сгорания через форсунки, дробятся на мелкие капли, перемешивают­ся, испаряются и воспламеняются. Воспламенение (зажигание) топлива может осуществляться химии ческими, пиротехническими и электри­ческими средствами (часто компоненты топлива являются самовоспла­меняющимися).

Топливо после воспламенения горит при высоких дав­лениях (в некоторых случаях до 15—20 МПа и более). При горении топлива образуются газообразные продукты сгорания (рабочее тело), нагретые до высоких температур (3000—4500 К), которые истекают из камеры сгорания в окружающее пространство через сопло. По мере движения ПС по длине сопла тем­пература и давление их уменьша­ются, а скорость возрастает, пе­реходя через скорости звука в минимальном (критическом) сече­нии сопла. На выходе из сопла скорость истечения достигает 2700—4500 м/с. Чем больше се­кундный расход массы и скорость газа на выходе из сопла, тем боль­ше тяга, создаваемая КС.

Примерный характер измене­ния температуры Т, давления р и скорости w топлива и газов по длине камеры ЖРД изображен на рис. 1.3. Высокие термо- и газодинамические параметры (давление, температура, скорость) газа, а также коррозионное и эрозионное воз­действие ПС на стенку камеры создают чрезвычайно тяжелые усло­вия ее работы. Обычно для надежной работы камеры помимо интенсив­ного наружного (регенеративного) охлаждения применяют специаль­ные методы защиты: пристеночную зону с пониженной температурой газа (внутреннее охлаждение), специальные термостойкие покрытия стенок и т. д. Применение внутреннего охлаждения, как правило, уменьшает удельный импульс, что невыгодно, так как снижается эко­номичность двигательной установки.

В общем же случае ЖРД состоит из КС (или нескольких камер), систем регулирования и подачи компонентов топлива, исполнитель­ных устройств для создания управляющих моментов, соединительных магистралей и т. п. Система регулирования осуществляет автомати­ческое поддержание или программированное изменение параметров в камере для обеспечения заданных величин тяги, определенного со­отношения компонентов, устойчивой работы КС, а также управляет переходными процессами, например запуском и остановкой двигате­ля. Для системы регулирования применяют различные клапаны, ре­дукторы, запальные устройства и другие элементы, называемые ор­ганами автоматики, назначение которых — осуществлять определен­ные опеоании в заданной последовательности.

Компоненты в камеру сгорания подают или с помощью вытеснительной системы по­дачи, или с помощью насоса. В последнем случае систему называют насосной. Обычно для привода насосов используют турбину. Поэтому агрегат, состоящий из насосов и турбин, называют турбонасосным (ТНА). Ра­бочее тело для привода турбины обычно получают в газогенераторе (ГГ). Моменты, уп­равляющие ЛА, как правило, создаются либо поворотом камеры ЖРД относительно оси, либо изменением величины тяг непод­вижных камер.

Таким образом, исходное химическое топливо является одновре­менно источником энергии и источником рабочего тела для получения тяги. Совокупность отмеченных признаков определяет класс химиче­ских РД, характерная особенность которых по сравнению с другими РД — высокие удельные расходы топлива (массовый расход топлива, приходящийся на единицу развиваемой тяги), вызванные необходи­мостью иметь на борту аппарата горючее и окислитель. В связи с этим время работы химических РД ограничено запасами топлива в аппарате, которое относительно невелико.

Из всего многообразия химических РД ограничимся рассмотре­нием только жидкостного ракетного двигателя, который занимает осо­бое место в ракетной технике и широко используется в освоении кос­мического пространства.

ТОПЛИВА ТЕПЛОВЫХ ДВИГАТЕЛЕЙ

Топлива тепловых двигателей являются носителями химический энергии и источником массы рабочего тела и представляют собой расходуемые индивидуальные вещества или их совокупность, спо­собные к химическим превращениям (горению, разложению) с вы­делением энергии и образованию рабочего тела — высокотемператур­ных продуктов. Эти продукты в конечном итоге используются для совершения механический работы. Для процесса горения, 1редстав-ляющего собой быстротекущее окисление, требуется окислитель и горючее. Для некоторых тепловых двигателей (поршневых ДВС, воздушно-реактивных, гидроракетных) окислителем является веще­ство, поступающее в двигатель из окружающей среды: атмосферный воздух или забортная вода. Так как здесь окислитель не расходуется с борта транспортного средства, то в этих случаях часто нe делают различия между понятиями «топливо» и «горючее».

В автономных (ракетных) двигателях окислитель и горючее находится на борту транспортного средства, под топливом понимают совокупность окислителя и горючего. В ряде случаев используются

однокомпонентные (унитарные) топлива, способные к экзотермичес­ким реакциям разложения.