Смекни!
smekni.com

Оптикоэлектроника (стр. 2 из 2)

Обычно внутренняя (световедущая) жила изготавливается из чистого кварца, а светоотражающая оболочка, имеющая меньший показатель преломления, из кварца, легированного бором. Диа­метр внутренней жилы световода обычно не превышает десятков мкм, диаметр оболочки — 100 мкм. Как показывают эксперимен­тальные исследования, такие световоды отличаются высокой проч­ностью и в то же время устойчивы к изгибам и скручиванию.

Двухслойные световоды могут объединяться в кабели, содержа­щие до нескольких сот двухслойных волокон (рис. 10.6). Типовые технические данные оптических кабелей следующие: наружный диаметр 2...20 мм; прочность на разрыв—от десятков до сотен

ньютонов, масса—2...200 г/м (минимальные зна­чения порядка 0,3 г/м), допустимый радиус изгиба 5...50 см.

Весьма сложную задачу представляет собой ввод излучения в световод. Наилучшее сопря­жение достигается при использовании в качест­ве излучателя твердотельного лазера, создаю­щего когерентное излучение. Более сложно об" стоит дело при соединении световодов со светоизлучающими диодами, имеющими широкую диаграмму направленности. В этом случае световедущая сердце­вина волокна размещается непосредственно над активной областью светодиода (рис. 10.7, и). Эффективность ввода может быть повы­шена с помощью специальных фокусирующих линзовых систем (рис. 10.7, б), однако это существенно усложняет конструкцию устройства ввода.

Оптоэлектронные устройства находят все более широкое приме­нение в вычислительной технике. Наиболее перспективными в на­стоящее время считаются так называемые голографические устрой­ства памяти ЭВМ, основанные на принципах голографии — нового, быстро развивающегося направления оптоэлектроники.

Прежде чем познакомиться с работой оптического запоминающего устройства (ЗУ), необходимо хотя бы в общих чертах рассмотреть сущность голографического отображения информации.

В 1947 г. английский ученый Д. Габор разработал метод записи и вос­становления пространственной структуры световой волны (волнового фрон­та), который получил название голографии.

Известно, что обычное фотографическое изображение того или иного объекта не дает представления о его объемных свойствах. Это происходит потому, что фотопластинка реагирует только на среднюю интенсивность света при экспонировании и не способна реагировать на фазу световой волны, ко­торая зависит от расстояния между объектом и фотопластинкой. Д. Габор обратил внимание на то, что при фотографировании всегда приходится осу­ществлять наводку на резкость, иначе изображение будет нечетким. Между тем, независимо от наводки на резкость, с лучами света, образующими изоб­ражение на фотопластинке, никаких изменений на участке между объектом и фотопластинкой не происходит. В связи с этим Д. Габор предположил, что изображение объекта присутствует в скрытом от наблюдателя виде в любой

Рис. 10.7. Ввод излучения в световод:

а—безлинзовая система (1—кристалл световода; активная излучающая область; 3—световод: 4— оптический клей); б—с помощью фокусирующей линзы (1—излуча­тель; 2 — фокусирующий элемент; 3 - световод)

плоскости между объектом и фотопластинкой. Иначе говоря, изображение в том или ином виде содержится в самой структуре световой волны, распро­страняющейся от объекта к объективу фотоаппарата. Именно эта волна несет наиболее полную информацию об объекте, причем эта информация оказы­вается зашифрованной в амплитудных и фазовых изменениях волнового фрон­та. Таким образом, для получения необходимой информации об объекте, в том числе и о его объеме, достаточно зафиксировать (записать) пространственную структуру световой волны, а затем, используя эту запись, восстановить изоб­ражение объекта. Этот двухступенчатый процесс записи и восстановления волнового фронта, несущего информацию об объекте, и называется голографией, а зафиксированная пространственная структура световой волны — голограммой.

Каким же образом можно зафиксировать на фотопластинке ч амплитуду, и фазу световой волны? Д. Габор предложил использовать для записи голограммы явление интерференции двух когерентных световых лучей, а для восстановления изображения с голограммы — явление дифракции света.

Как известно, при интерференции волны от двух одинаковых источников света, расположенных на некотором расстоянии друг от друга, в любой точ­ке пространства будут накладываться друг на друга, причем в некоторых точках произойдет удвоение амплитуды, а в некоторых амплитуда колебаний окажется равной нулю. Это дает основание утверждать, что в интерференци­онной картине содержится определенная фазовая информация, позволяю­щая определить расстояние от какого-то места интерференционной картины до источника (или источников) изучения. Величина максимумов распреде­ления поля в интерференционной картине позволяет оценить интенсивность излучения, а соотношение между максимумами и минимумами — когерент­ность. Следовательно, в интерференционной картине (голограмме) записана вся возможная информация об излучении источников.

Когерентный луч света, который освещает объект и рассеивается им, на­зывают сигнальным; луч, создающий когерентный фон — опорным.

Одна из важнейших особенностей голографии — возможность записи большого числа голограмм на одной и той же фотопластинке при использо­вании по-разному направленных опорных лучей.

Если для записи голограммы необходимы два источника когерентного изучения, то для восстановления изображения объекта голограмму доста­точно осветить только одним опорным лучом. Для извлечения информации из голограммы обычно пользуются той же установкой, что и для голографирования. Голограмма устанавливается на то же место, где находилась фотопластинка при изготовлении голограммы, и облучается лучом лазера.

За счет явления дифракции луч света после прохождения голограммы разделяется на три составляющих: одна из них проходит через голограмну без изменения направления (так называемый луч нулевого дифракционного порядка); два других отклоняются от первоначального направления на не­который угол, зависящий от длины волны и шага интерференционных полос, зафиксированных на голограмме (лучи первого и второго дифракционного порядков). Эти лучи содержат всю информацию о голограмме, а наблюдатель, фиксирующий их, получает наиболее полное представление о форме и объеме соответствующего объекта.

.'Рассмотрим теперь возможности записи информации в голографических ЗУ вычислительных машин (рис. 10.8).

.Объектом записи в вычислительной технике обычно является .'вумерная матрица двоичных знаков. При записи информации луч лазера с помощью системы зеркал разделится на два: сигнальный, проходящий через запоминаемый объект, и опорный. Направление опорного луча управляется дефлектором — устройством, состоя-

Рис. 10.8. Структурная схема голографического запоминающего устройства (ЗУ)

щим из модулятора поляризации света и лучепреломляющего кри­сталла. В зависимости от комбинации управляющих напряжений, поступающих на вход модулятора, можно получить множество пространственных положений светового луча. Изменение дефлек­тором направления опорного луча позволяет последовательно за­писать необходимое .число голограмм.

Цифровая информация, подлежащая записи, наносится на так называемый транспарант, представляющий собой двумерную матрицу прозрачных и непрозрачных участков, соответствующих единицам и нулям двоичного кода.

При воспроизведении информации дефлектор настраивается на определенное положение опорной волны и таким образом выбира­ется изображение требуемого транспаранта. Сигнальный луч при этом перекрывается затвором. Дальнейшая выборка нужной ин­формации осуществляется электронным путем при обработке сиг­налов, зафиксированных при воспроизведении на матрице фото­приемников.

Стандартные фотопластинки, используемые в голографических ЗУ, обеспечивают сочетание высокой разрешающей способности (до 3 • 103 .линий/мм) и фото чувствительности (порядка 10 в -5Дж/см2). Емкость памяти типичного голографического ЗУ составляет 106 бит/с.

Повышенный интерес к топографическим ЗУ объясняется не ­только большой информационной емкостью голограмм. Основным фактором является высокая помехоустойчивость голографической записи, поскольку при любых видах помех интерференционная картина записанного изображения практически не нарушается.