Смекни!
smekni.com

Основы формальной логики (учебно-методическое пособие для студентов вечернего и заочного отделения) (стр. 6 из 7)

Различается полная, неполная и математическая индукция. В рамках полной индукции вывод о свойствах класса предметов делается на основании изучения его отдельных частей. Неполная индукция дает знание о классе предметов на основании изучения части предметов данного класса.

Схема индуктивного умозаключения: Неполная индукция включает:

А1 имеет признак В 1.Популярную (энумеративную)

А2 имеет признак В 2.Научную (элиминативную)

н 3.Статистическую

н

Ан имеет признак В

А1, А2,…..Ан имеют признак В

Если в популярной индукции объекты выбираются случайно, то в научной изучаются планомерно, наиболее типичные, на основе контрольных партий и замеров. Это позволяет сделать научное заключение о необходимых причинно-следственных связях и законах. Статическая индукция – это умозаключение от выборки (модели), к совокупности явлений, тенденций. Это перенос относительной частоты появления признака на более широкий класс явлений. Изучение случайных массовых явлений (банкротство), непредсказуемых в частностях, показывает их наступление в числовых пропорциях целого (вероятность банкротства). Математическая индукция говорит о свойствах бесконечно больших множеств без проверки вывода бесконечно много раз. На этой основе установлены законы, формулы арифметической прогрессии и другие.

Повышению степени вероятности и истинности индуктивных умозаключений служит ряд методов. С их помощью индуктивная логика устанавливает причинно-следственные связи при различных условиях протекания явлений. К уточненным и классифицированным Д.С. Миллем относятся методы: сходства, различия, сопутствующих изменений, остатков и др. Метод сходства основан на поиски общего фактора исследуемого явления, при различных условиях его обнаружения. Исключая из этих условий исходные признаки можно выявить общий фактор, который и будет причиной данного явления.

Формула метода и сходства гласит, что если:

При условии А, В, С возникло явление Q

При условии А, К, L возникло явлении Q

При условии А, Р, Q возникло явлении Q

Вероятно А есть причина Q

Метод различия указывает, что если наличие или отсутствие признака вызывает или устраняет явлении, то этот признак причина явления. Так если:

При условии А, В, С, D происходит явлении d

При условии А, В, С отсутствует явление d

Вероятно D есть причина d

Метод сопутствующих изменений говорит о соответствии одних изменений и величин других. Изменение предшествующего обстоятельства есть либо его следствие, либо находится с ним в причинном отношении.

При условии А, В,С,D существует явление Q

При условии A1,B,C,D существует явление Q1

Следовательно, обстоятельство А есть причина Q

Важно знать, что этим методом установлены: величина урожайности в зависимости от климатических изменений, расширение тел от нагревания и др.

При характеристике этих и других методов студенту важно избежать ряда ошибок, наиболее характерных для индуктивных умозаключений. К таким ошибкам относятся: поспешность обобщения без достаточного основания, подмена причинной связи некими внешними явлениями, подмена условного безусловным в форме поспешного обобщения без учета места, времени и прочее.

Использование самостоятельно осмысленных и творчески переработанных правил мышления для специалиста основа успеха в практической деятельности.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Что такое индукция и каковы ее виды?

2. Какова познавательная роль индукции?

3. Какие методы используются при установлении причинных связей в индуктивных умозаключениях?

4. Какова сущность традукции – умозаключения по аналогии?

5. Каковы условия повышения вероятности вывода в традуктивных умозаключениях?

8. АРГУМЕНТАЦИЯ И ДОКАЗАТЕЛЬСТВО

Уменние и потребность обоснованно доказывать положения и суждения в ходе полемики, беседы и других форм общения важный показатель правильного мышления и профессиональной компетентности. При этом студенту важно понять, что содержание логического знания необходимо для овладения искусства аргументации и рационального убеждения.

Доказательство – это логический прием обоснования истинности суждения с помощью других истинных суждений. Содерожание доказательства включает в себя тезис, основание (аргументы) и форму доказательства или демонстрацию. Тезис – это суждение или положение, истинность которого требуется доказать. Аргументы (основания) – это способ доказательства, может принимать форму различных умозаключенийц, например, дедуктивных: al (M-P)

а 2 (M-S)

T (S-P)

Для доказательства используются также индуктивные умозаключения и аналогии, например, al (А имеет признак КМР)

а 2 (В имеет признак КР)

Тезис, следствие В, возможно, имеет признак М.

По способам доказательство делится на прямое, косвенное и генетическое. Прямое доказательство использует неоспоримые факты, а также обоснование аргументами истинности тезиса. Это ответы на экзаменах, научные споры, доказательство в суде и другое. В тоже время юридические доказательства, с опорой на факты, являются частными суждениями и из них нельзя получить дедуктивного умозаключения. В косвенном доказательстве вначале доказывают антитезис и, убедившись в его ложности, доказывают истинность тезиса. Антитезисом могут выступать одно или несколько суждений. В зависимости от этой структуры антитезиса косвенные доказательства делятся на : апагогические ( от противного) и разделительные.

В первом случае путем опровержения антитезиса доказывается истинность тезиса. Этот путь часто используется в математике, когда в теореме о непересекаемости двух перпендикуляров к одной прямой допускается их пересечение. Антитезис показывает возможность опущения из одной точки на прямую двух перпендикуляров, что противоречит аксиоме об одном перпендикуляре на прямую из одной точки. Антитезис ложен, следовательно, истинен тезис.

Разделительное доказательство основано на установлении истинности тезиса путем последовательного исключения всех элементов разделительного суждения или гипотез, кроме одного, достаточного аргумента.

А есть или В, или С, или D – применяется отрицающе утверждающий.

А не есть В модус разделительно-категорического силлогизма.

А не есть С

А есть D

На практике это сужает круг лиц какого-либо происшествия или ситуаций, ведущих к нему.

Генетическое доказательство применяется при установлении происхождения и развития термина концепции в научных и исторических исследованиях. Для практики особенно важно убедиться в их истинности на основе подлинных источников. При этом для студента важно понять, что нормой доказательства являются:

- умение применять все виды доказательства

- использовать только истинные тезис и аргументы

- опираться на подлинные факты, имеющие отношение к тезису

- не применять неясных, двусмысленных и противоречивых тезисов и аргументов

- способы доказательства должны соответствовать законам логики, чтобы не появились возможные ошибки

К логическим ошибкам, вследствие неправильного использования правил доказательства и опровержения относятся паралогизмы, софизмы и парадоксы.

Паралогизм, или неправильное рассуждение, появляется вследствие неправильного вывода, незнания предмета или законов логики.

Софизм – это преднамеренная ошибка, сознательное нарушение правил логики, рассчитанное на ввод противника в заблуждение, стремление выдать ложь за истину. Это «кривая речь» или «мнимая мудрость» Если паралогизмы возникают случайно, то софизмы это нарушение правил и сознательное отвлечение внимания от главного утверждения.

Софизм: «Вор не желает приобрести ничего дурного.

Приобретение хорошего, есть дело хорошее.

Следовательно, вор желает хорошего» скрывает истинное значение понятия «приобретение».

Парадокс – это необычное явление или высказывание, которое резко расходится с действительностью. Они возникают из-за неясности, противоречий исходных принципов и норм познания. Таков классический парадокс «Что я говорю – ложно». Решение парадокса требует выхода за уровень данной системы рассмотрения объекта. В то же время парадоксы приводят к глубинным открытиям. Это создание теории иррациональных чисел, парадоксы теории множеств и многое другое.

В ходе общения важно не только умение отстаивать свои положения, но и опровергать позицию собеседника. Этому служит логический прием опровержения или разрушения доказательства путем установления ложности ранее выдвинутого тезиса.

Структура опровержения включает:

- Тезис опровержения; суждение, которое необходимо опровергнуть

- Аргументы опровержения, суждения, при помощи которых опровергается тезис

- Демонстрацию – логическую форму построения опровержения

По аналогии с предыдущим материалом студент усваивает и рассматривает основные виды опровержений. Для этого, опираясь на дополнительную учебную литературу, студент подбирает примеры критики тезиса с помощью опровержения фактами, сведения к абсурду и доказательство антитезиса. Использование формулы сведения к абсурду показывает:

Если А есть В, то С есть D Ложность следствия ведет к

Но С не есть D ложности исходного тезиса.

Следовательно А не есть В

При доказательстве антитезиса ( опровержения от противного) установление его ложности по закону исключенного третьего указывает на истинность тезиса.