Для строительных конструкций важным фактором является огнестойкость. Огнестойкость – это способность строительных конструкций сохранять под действием высоких температур пожара свои рабочие функции, связанные с огне преграждающей, теплоизолирующей или несущей способностью. Огнестойкость строительных конструкций характеризуется пределом огнестойкости. Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность.
Здания и сооружения, а также их части подразделяют по степеням огнестойкости на восемь групп – I, II, III, IIIa, IIIб, IV, IVa, V.
Минимальные пределы огнестойкости конструкций представлены в табл. 4.4.
Таблица 4.4
Минимальные пределы огнестойкости конструкций по степеням
огнестойкости зданий, час.
Наименование конструкции | Степень огнестойкости |
I II III IIIа IIIб IV IVа V | |
Несущие стены | 2,5 2 2 1 1 0,5 0,5 Н.Н |
Наружные и внутренние не несущиестены | 0,5 0,25 0,25 0,25 0,25 0,25 0,25 Н.Н. |
Колонны | 2,5 2 2 0,15 1 0,5 0,25 Н.Н. |
Несущие конструкции покрытий | 1 0,75 0,75 0,25 0,75 0,25 0,25 Н.Н. |
Элементы покрытий | 0,5 0,25 Н.Н. 0,25 0,25 Н.Н. 0,25 Н.Н. |
Обьемно-планировочные решения по зданию приняты с учетом защищенности от возникновения и распространения огня в случае пожара ,а также безопасных и достаточных путей эвакуации в соответствии со СниП21.01-972 «Пожарная безопасность зданий и сооружений» и СниП 2.08.02-89 «Общественные здания и сооружения».
По степени огнестойкости здание относится к IIIА степени огнестойкости. Предусмотрены следующие противопожарные мероприятия:
-планировка зданий обеспечивает безопасную эвакуацию людей из помещений через эвакуационные выходы;
-все двери на путях эвакуации открываются по направлению выхода из здания;
-двери лестничных клеток имеют приспособления для самозакрывания и уплотнения в притворах;
-двери в технические помещения,запроектированы противопожарными ,с пределом огнестойкости не менее 1 час;
-все проходы по ширине и высоте обеспечивают безопасную эвакуацию людей из здания;
-внутреняя отделка путей эвакуации запроектирована из негорючих материалов;
-в гараже установлены пожарные краны и первичные средства тушения пожара;
-предусмотрена блокировка систем вентиляции с системой автоматической сигнализации о возникновении пожара;
- предусмотрена противодымная система вентиляции в гараже с огнестойкостью 1 час;
- здание оборудуется извещателями пожарной сигнализации с выводом на пульт в помещение дежурного персонала;
-наружное пожаротушение осуществляется от существующих пожарных гидрантов, установленных на городской сети водопровода;
-внутреннее пожаротушение осуществляется от пожарных кранов.
4.4.Заключение
Системы отопления, вентиляции и дымоудаления жилого дома с подземным гаражом запроектированы с учетом требований техники безопасности при их эксплуатации. Не наносят вреда окружающей среде и не нарушают санитарно-гигиенические нормы, соответствуют нормальным условиям отдыха.
5. ЭКОЛОГИЧЕСКАЯ ЧАСТЬ ПРОЕКТА
5.1. Характеристика объекта
Жилой дом с подземным гаражом размещается в городе Екатеринбурге по ул. Народной Воли.
Объект расположен в зоне жилой застройки. Рельеф местности спокойный. C cеверной стороны к объекту примыкает территория ДК «Автомобилист», с других сторон - территория жилой застройки.
Подземный гараж разделен на 52 бокса. Среднее количество выездов автомобилей из помещения в 1 час равно 7, время выезда – 30 минут.
5.2.Характеристика вредных веществ.
Источниками выделения вредных веществ являются работающие двигатели автомобилей при въезде и выезде.
Основными вредностями являются оксид углерода СО, диоксид азота NO2, аэрозоли свинца и сернистый ангидрид SO2, не обладающие эффектом суммации действия.
В качестве предельно допустимых приняты максимальные разовые концентрации вредных веществ (кроме свинца) согласно [24]. Для свинца в качестве предельно допустимой принята среднесуточная концентрация в виду отсутствия максимально разового норматива.
Таблица 5.1.
Наименование вещества | Класс опасности | ПДК,мг/м3 |
Двуокись азота NO2 | 2 | 0,085 |
Сернистый ангидрид SO2 | 3 | 0,5 |
Окись углерода СО | 4 | 5 |
Свинец | 1 | 0,0003 |
5.3. Расчет количества вредных веществ выбрасываемых в атмосферу
Расчет произведен на основании [25]. Количество загрязняющих веществ, выделяемых в атмосферу при движении автомобилей в закрытых стоянках определяется по формуле:
Gj= qi*L*Aэ*i*Kc/tв, (5.1.)
где Gj - масса выброса j-того загрязнителя,г/с;
n - количество типов автомобилей;
qi - удельный выброс j-того загрязнителя одним автомобилем i-того типа, г/км [25];
L - условный пробег одного автомобиля за цикл на территории гаража с учетом времени запуска двигателя, движения по территории, км [25];
Aэ - эксплутационное количество автомобилей в гараже с учетом коэффициента выезда, принятым равным 0,8;
Kc - коэффициент, учитывающий влияние режима движения автомобиля.[25];
tв - время выезда или въезда автомобиля в секундах.
Время выезда автомобилей в расчете принято 0,5ч.
Количество выделяющейся окиси углерода СО равно:
Gco=20,8*0,5*2*0,8*1,4/1800=0,052 г/с.
Аналогично расчитываются остальные количества выделяющихся вредных веществ:
двуокись азота GNO2==0,0003 г/с.
сернистый ангидрид GSO2=0,00012 г/с,
аэрозоли свинца GPb=0,00004 г/с.
Валовые выбросы загрязняющих веществ равны выбросам при выезде и въезде автомобилей в течении дня, умноженным на число дней в году.
Валовый выброс окиси углерода СО:
Мсо=0,0683 т/год;
Валовый выброс двуокиси азота NO2:
МNO2=0,00039 т/год;
Валовый выброс аэрозолей свинца:
Мcвинца=0,000052 т/год;
Валовый выброс сернистого ангидрида SO2:
МSO2=0,00016 т/год.
5.4. Расчет рассеивания выбросов в атмосфере.
Расчет рассеивания в атмосфере одиночных выбросов вредных веществ производится в соответствии с[24].Задачей расчета является определение концентраций оксида углерода СО, двуокиси азота NO2, аэрозолей свинца и сернистого ангидрида SO2 на уровне земли при касании ее облаком вредностей. Эти данные необходимы для сопоставления с допустимыми значениями для зоны жилой застройки.
Для одиночного источника вредных выбросов должно выполняться условие :
Cx<=Ф, (5.2.)
где Сx - концентрация вредного вещества в расчетной точке, мг/м3;
F-допустимое повышение концентрации вредного вещества в атмосфере в результате рассеивания,определяется как разность предельно допустимой концентрации(ПДК) и фоновой Сф,мг/м³.
При наличии нескольких разнородных вредных веществ, не обладающих суммацией действия, условие Cx<=Ф должно выполняться для каждого из них.
Распространение концентрации вредных веществ в направлении ветра подчиняются следующим закономерностям.
При опасной для данного источника скорости ветра на некотором расстоянии Xм от него наблюдается максимальная концентрация вредного вещества в приземном слое атмосферы См.
Исходные данные для расчета рассеивания окиси углерода СО:
V=3,5 м³/с;
А=160 (для Урала);
М=0,052 г/с;
F=1;
hp=1;
D=0,5 м;
H=28 м;
DT=3;
l,e-расстояние от ИВВ до ближайшей и дальней границ зоны жилой застройки (l=30м,e=200м).
Максимальное значение приземной концентрации вредного вещества находится в зависимости от параметра f , определяющего тип выбросов (холодные или нагретые)
f=1630*V2/(D3*H*DT), (5.3.)
где V - расход выбрасываемого воздуха ,м3/с;
D - диаметр трубы,м;
H - высота трубы,м;
DT - разность температур выбрасываемого воздуха и наружного
воздуха,K;
f=1630*3,5/0,5*28*3=136>100 - выбросы холодные, и формула для расчета максимального значения приземной концентрации вредных веществ См,мг/м3,имеет вид:
См=A*M*F*D*n*hp/8*H
*V, (5.4.)где А - коэффициент температурной стратификации,(с2/3*мг*град1/3)/г;
М - количество вредного вещества , выбрасываемого в атмосферу, г/с;
F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе, F=1;
N - коэффициент, учитывающий условия выхода газовоздушной смеси из устья ИВВ (при gм < 0,5 n=4,4* gм=4,4*0,41=1,83);
hp - коэффициент, учитывающий влияние рельефа местности (при перепаде высот менее 50 м hp=1);
d - коэффициент распространения максимума концентрации вредности (при gм < 0,5 d=5,7);
Откуда См=160*0,052*1*0,5*1,83*1/8*28
*3,5=0,0032 мг/м³.Расстояние от источника Xм , на котором будет максимальная концентрация вредностей См определяется по формуле:
Xм=(5-F) *d*H /4, (5.5.)
где d - коэффициент распространения максимума концентрации вредности (при gм < 0,5 d=5,7);
Xм=(5-1) *5,7*28/4=160 м.
Концентрация Сx по оси рассеивания облака вредности в любой точке с относительной координатой x=x/xм определяется по формуле:
Сx=S1*Cм, (5.6.)
где S1- коэффициент, учитывающий изменение концентрации по оси факела.
XL=L/Xм=30/160=0,19 м;
Xe=e/Xм=200/160=1,25 м;
При X<1: S1=3X
-8X +6X ;S1,L =0,165;