Рисунок 2.2 ‑ ФЧХ цепи; размерность ArgK(w) – рад, w – рад/с
3 РАСЧЕТ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЦЕПИ
3.1 Определение переходной характеристики цепи
Переходная характеристика цепи:
h(t)=hпр(t)+hсв(t) | (18) |
Т.к. воздействие – ток, а реакция – ток на индуктивности, следует (см. рисунок 3.1):
, | (19) |
Для определения режима переходного процесса запишем входное сопротивление в операторной форме:
Рисунок 3.1‑Эквивалентная схема при t стремящемся к бесконечности
(20) |
Приравнивая знаменатель к нулю, после несложных преобразований получим:
или ,где:
, | (21) |
(рад/с) | (22) |
Т.к.
, следует режим колебательный, а значит:, | (23) |
где: (рад/с) | (24) |
– угловая частота затухающих свободных колебаний в контуре, А и
‑ постоянные интегрирования.Для определения постоянных интегрирования составим два уравнения для начальных значений
(+0) и (+0): (25), (26) (см.рисунок 3.2),
(27),т.к. в момент комутации напряжение на сопротивлении R2 равно напряжению на индуктивности (см. рисунок 3.2).
(28) |
(29) |
Рисунок 3.2 – Эквивалентная схема в момент коммутации
Подставляя выражения (19), (21), (23), (24), (26), (27), (28), (29) в (25) получим:
(30) |
(31) |
(32) |
Результаты расчётов приведены в таблице 3.1, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.3
Таблица 3.1 | Расчёт переходной характеристики |
t, с | h(t) |
0 | 0 |
1.00e-8 | 0.303504193 |
2.00e-8 | 0.489869715 |
4.00e-8 | 0.632067650 |
5.00e-8 | 0.642131278 |
7.00e-8 | 0.624823543 |
8.00e-8 | 0.613243233 |
1.00e-7 | 0.597388596 |
1.10e-7 | 0.593357643 |
1.30e-7 | 0.590241988 |
1.40e-7 | 0.590004903 |
1.70e-7 | 0.590600383 |
1.90e-7 | 0.590939689 |
2.00e-7 | 0.591026845 |
2.20e-7 | 0.591095065 |
2.30e-7 | 0.591100606 |
2.50e-7 | 0.591093538 |
2.60e-7 | 0.591088357 |
2.80e-7 | 0.591081098 |
3.00e-7 | 0.591078184 |
0.591078066 |
Рисунок 3.3 – Переходная характеристика цепи; размерность t – сек,
h(t) – безразмерная величина
Как видно из рисунка 3.3, свободные колебания затухают достаточно быстро; при таком масштабе рисунка видны колебания в течение, примерно, одного периода свободных колебаний (
), однако переходной процесс длится немного дольше, а спустя 0,3 мкс колебаниями можно пренебречь т.к. они достаточно малы (см. таблицу 3.1) и считать переходной процесс завершенным.3.2 Определение импульсной характеристики цепи
Импульсная характеристики цепи:
(34), | (35), |
где 1(t) – единичная функция.
Подставляя (33) в (35) находим:
(36) |
Результаты расчётов приведены в таблице 3.2, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.4 и 3.5
Рисунок 3.4 – Импульсная характеристика цепи в крупном масштабе; размерность t – сек, g(t) – безразмерная величина
Оба графика имеют одну и ту же шкалу времени, поэтому можно оценить, насколько быстро затухают колебания, и во сколько раз уменьшается их амплитуда за ничтожный промежуток времени.
Таблица 3.2 | Расчёт импульсной характеристики |
t, c | g(t) |
0 | 3.697e7 |
4.0e-8 | 2.299e6 |
6.0e-8 | -9.911e5 |
8.0e-8 | -1.066e6 |
1.0e-7 | -5.184e5 |
1.2e-7 | -1.460e5 |
1.4e-7 | -1.503e3 |
1.8e-7 | 1.697e4 |
2.0e-7 | 6.486e3 |
2.2e-7 | 1.167e3 |
2.4e-7 | -412.634 |
2.6e-7 | -482.050 |
2.8e-7 | -240.781 |
3.0e-7 | -70.193 |
3.2e-7 | -2.270 |
3.6e-7 | 7.780 |
3.8e-7 | 3.053 |
4.0e-7 | 0.587 |
4.2e-7 | -0.169 |
4.4e-7 | -0.218 |
4.6e-7 | -0.112 |
4.8e-7 | -0.034 |
5.0e-7 | -1.775e-3 |
5.4e-7 | 3.561e-3 |
5.6e-7 | 1.434e-3 |
5.8e-7 | 2.930e-4 |
6.0e-7 | -6.843e-5 |
6.2e-7 | -9.799e-5 |
6.4e-7 | -5.175e-5 |
6.6e-7 | -1.610e-5 |
7.0e-7 | 2.166e-6 |
7.4e-7 | 6.730e-7 |
7.6e-7 | 1.453e-7 |
7.8e-7 | -2.702e-8 |
8.0e-7 | -4.405e-8 |
0 |
Рисунок 3.5 – Импульсная характеристика в более мелком масштабе