Смекни!
smekni.com

Расчёт частотных и временных характеристик линейных цепей (стр. 4 из 4)

; размерность t – сек, g(t) – безразмерная величина


3.3 Расчет отклика цепи на заданное воздействие методом интеграла Дюамеля

При кусочно-непрерывной форме воздействия отклик необходимо искать для каждого из интервалов времени отдельно.

При применении интеграла Дюамеля с использованием переходной характеристики h(t) отклик:

при

,
(37)

где:

y(x) – аналитическое выражение описывающее воздействие (см. рисунок 3.6)

составим аналитическое выражение y(x):

x y
0 0
3*10^-5 7

(38)

Рисунок 3.6 – График воздействия

(39)

Подставляя выражения (33), (39) в(37) и учитывая, что y(0)=0 получим:


Результаты расчётов приведены в таблице 3.3, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.7 и 3.8

Таблица 3.3

Расчёт отклика при

t, c i(t), А
0 0
1.0e-6 0.136879881
2.0e-6 0.274798097
3.0e-6 0.412716312
5.0e-6 0.688552743
6.0e-6 0.826470958
7.0e-6 0.964389174
9.0e-6 1.240225604
1.0e-5 1.378143820
1.1e-5 1.516062035
1.3e-5 1.791898466
1.4e-5 1.929816681
1.5e-5 2.067734897
1.7e-5 2.343571328
1.8e-5 2.481489543
1.9e-5 2.619407758
2.1e-5 2.895244189
2.2e-5 3.033162405
2.3e-5 3.171080620
2.5e-5 3.446917051
2.6e-5 3.584835266
2.7e-5 3.722753482
2.8e-5 3.860671697
2.9e-5 3.998589912
3.0e-5 4.136508126



Рисунок 3.7 – Отклик цепи при
в крупном масштабе; размерность


t – сек, i(t) – Ампер

Рисунок 3.8 ‑ Отклик цепи при

в более мелком масштабе; размерность

t – сек, i(t) – Ампер


Поскольку данный график содержит ось времени от 0 до t1, да плюс, как мы увидели по переходной характеристике, затухание происходит очень быстро, увидеть в таком масштабе колебания нельзя. На рисунке 3.8 ось времени содержит значения от 0 и до 2*10^-7 секунд, на этом графике хоть и слабо, но все же видно, что нарастание вначале нелинейное.

при

Результаты расчётов приведены в таблице 3.4, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.9

Таблица 3.4

Расчёт отклика при

t, c i(t), А
3.e-5 4.136508126
3.001e-5 2.012978646
3.002e-5 0.708853559
3.004e-5 -0.286479932
3.006e-5 -0.316233940
3.007e-5 -0.236089753
3.009e-5 -0.089807225
3.010e-5 -0.044172156
3.011e-5 -0.015965080
3.012e-5 -7.804401718e-4
3.015e-5 6.723438063e-3
3.016e-5 5.056128946e-3
3.017e-5 3.342384970e-3
3.019e-5 9.685895329e-4
3.020e-5 3.587128387e-4
3.022e-5 -1.187888560e-4
3.024e-5 -1.428833579e-4
3.025e-5 -1.082465352e-4
3.026e-5 -7.200797423e-5
3.028e-5 -2.122389760e-5
3.029e-5 -8.042151551e-6
3.030e-5 -8.306802357e-7
0


Рисунок 3.9 – Отклик цепи при
; размерность t – сек, i(t) – Ампер


Таким образом, отклик на заданное воздействие имеет вид графика изображенного на рисунке 3.10

Рисунок 3.10 – Отклик цепи; размерность t – сек, i(t) ‑ Ампер


ВЫВОДЫ

В процессе выполнения курсовой работы вопросов появляется больше, чем пунктов в задании. Одними из них является семейство вопросов о размерности коэффициентов и промежуточных величин при расчете переходной характеристики, а также размерность ее производной и т.д.

В план закрепления материала, на мой взгляд, идут только первые четыре задания, поскольку с такого рода задачами мы встречались, а последние три задания представляют особую важность, их приходится не закреплять – в них приходится разбираться.

Достоинством данной курсовой работы является подбор в ней заданий, они не являются нудными и однообразными как, например, курсовые по механике, в которых все одно и тоже и в пять раз больше.


СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

1. В. П. Шинкаренко, П. Ф. Лебедев. Методические указания к курсовой работе по курсу « Теория электрических и магнитных цепей». ‑ Харьков: «ХГТУРЭ», 1993.

2. Т. А. Глазенко, В. А. Прянишников. Электротехника и основы электроники. – М.: «Высшая школа», 1985.

3. Г. И. Атабеков. Теоретические основы электротехники. – М.: «Энергия», 1978.

4. Н. В. Зернов, В. Г. Карпов. Теория радиотехнических цепей. – Л.: «Энергия», 1972.